Ir al contenido

Documat


Stability And Boundedness In Nonlinear And Neutral Difference Equations using New Variation of Parameters Formula And Fixed Point Theory

  • Autores: Youssef N. Raffoul
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 21, Nº. 3, 2019, págs. 39-61
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462019000300039
  • Enlaces
  • Resumen
    • español

      Resumen En el caso de problemas no-lineales, ya sea en ecuaciones diferenciales o en diferencias, es difícil y en algunos casos imposible invertir el problema y obtener una aplicación apropiada que pueda ser efectivamente usada en teoría de punto fijo para analizar quantitativamente sus soluciones. En este paper consideramos la existencia de una sucesión positiva y la usamos en la capacidad del factor de integración para obtener una nueva fórmula de variación de parámetros. Luego, usaremos esta nueva fórmula de variación de parámetros y volver al principio de contracción para obtener resultados que involucran acotamiento, periodicidad y estabilidad. El autor se encuentra trabajando en resultados paralelos para el caso continuo

    • English

      Abstract In the case of nonlinear problems, whether in differential or difference equations, it is difficult and in some cases impossible to invert the problem and obtain a suitable mapping that can be effectively used in fixed point theory to qualitatively analyze its solutions. In this paper we consider the existence of a positive sequence and utilize it in the capacity of integrating factor to obtain a new variation of parameters formula. Then, we will use the obtained new variation of parameters formula and revert to the contraction principle to arrive at results concerning, boundedness, periodicity and stability. The author is working on parallel results for the continuous case.

  • Referencias bibliográficas
    • Adivar, M.,Islam, M.,Raffoul, Y.. (2012). Separate contraction and existence of periodic solutions in totally nonlinear delay differential...
    • Burton, T.. (1983). Volterra Integral and Differential Equations. Academic Press. New York,.
    • Burton, T.. (1985). Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press. New York,.
    • Burton, T.,Furumochi, T.. (2001). Fixed points and problems in stability theory. Dynam. Systems Appl.. 10. 89-116
    • Burton, T. A.. (1996). Integral equations, implicit functions, and fixed points,. Proc. Amer. Math. Soc.. 124. 2383
    • Elaydi, S.. (1999). An Introduction to Difference Equations. Springer. New York.
    • Elaydi, S.. (1994). Periodicity and stability of linear Volterra difference systems. J. Math. Anal. Appl.. 181. 483
    • Elaydi, S.,Murakami, S.. (1998). Uniform asymptotic stability in linear Volterra difference equations. J. Differ. Equations Appl.. 3. 203
    • Eloe, P.,Islam, M.,Raffoul, Y.. (2003). Uniform asymptotic stability in nonlinear Volterra discrete systems. Computers Math. Appl. 45. 1033
    • Hino, Y.,Murakami, S.. (1991). Total stability and uniform asymptotic stability for linear Volterra equations. J. London Math. Soc.,. 43....
    • Islam, M.,Raffoul, Y.. (2003). Exponential stability in nonlinear difference equations. J. Differ. Equations Appl.. 9. 819
    • Islam, M.,Yankson, E.. (2005). Boundedness and stability in nonlinear delay difference equations employing fixed point theory. Electronic...
    • Kelley, W.,Peterson, A.. (2001). Difference Equations: An Introduction with Applications. Harcourt Academic Press. San Diego.
    • Liu, J.. (2003). A First Course In The Qualitative Theory of Differential Equations. Pearson Education, Inc.,. Upper Saddle River, New Jersey....
    • Maroun, M.,Raffoul, Y.. (2005). Periodic solutions in nonlinear neutral difference equations with functional delay. J. Korean Math. Soc.....
    • Medina, R.. (2001). Asymptotic behavior of Volterra difference equations. Computers Math. Appl.. 41. 679
    • Medina, R.. (1994). The asymptotic behavior of the solutions of a Volterra difference equation. Computers Math. Appl.. 181. 19-26
    • Raffoul, Y.. (2018). Qualitative Theory of Volterra Difference Equations. Springer. New York.
    • Raffoul, Y.. (2006). Stability and periodicity in discrete delay equations. J. Math. Anal. Appl.. 324. 1356
    • Raffoul, Y.. (2004). Stability in neutral nonlinear differential equations with functional delays using fixed point theory. Mathematical and...
    • Raffoul, Y.. (2003). General theorems for stability and boundedness for nonlinear functional discrete systems. J. Math. Anal. Appl.. 279....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno