Ir al contenido

Documat


Some remarks on the non-real roots of polynomials

  • Autores: Shuichi Otake, Tony Shaska
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 20, Nº. 2, 2018, págs. 67-93
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462018000200067
  • Enlaces
  • Resumen
    • español

      RESUMEN Sea f ∈ ℝ (t) dada por f(t, x) = xn + t · g(x) y β1 < · · · < βm las diferentes raíces reales del discriminante ∆(f,x)(t) de f(t, x) con respecto de x. Sea γ el número de raíces reales de . Para todo ξ > |βm|, si n − s es impar entonces el número de raíces reales de f(ξ, x) es γ + 1, y si n − s es par entonces el número de raíces reales de f(ξ, x) es γ, γ + 2 si ts > 0 o ts < 0, respectivamente. Un caso especial del resultado anterior es construyendo una familia de polinomios irreducibles sobre ℚ de grado n ≥ 3 con muchas raíces no-reales y grupo de automorfismos Sn

    • English

      ABSTRACT Let f ∈ ℝ(t) be given by f(t, x) = xn + t · g(x) and β1 < · · · < βm the distinct real roots of the discriminant ∆(f,x)(t) of f(t, x) with respect to x. Let γ be the number of real roots of . For any ξ > |βm|, if n − s is odd then the number of real roots of f(ξ, x) is γ + 1, and if n − s is even then the number of real roots of f(ξ, x) is γ, γ + 2 if ts > 0 or ts < 0 respectively. A special case of the above result is constructing a family of degree n ≥ 3 irreducible polynomials over ℚ with many non-real roots and automorphism group Sn.

  • Referencias bibliográficas
    • Ben-Shimol, Oz. On Galois groups of prime degree polynomials with complex roots. Algebra Discrete Math.. 2009. 99-107
    • Beshaj, L.,Hidalgo, R.,Kruk, S.,Malmendier, A.,Quispe, S.,Shaska, T.. (2018). Rational points in the moduli space of genus two. Higher genus...
    • Beshaj, Lubjana. (2015). Reduction theory of binary forms. Advances on superelliptic curves and their applications. 84-116
    • Bialostocki, A.,Shaska, T.. (2005). Galois groups of prime degree polynomials with nonreal roots. Computational aspects of algebraic curves....
    • Elezi, Artur,Shaska, Tony. (2017). Reduction of binary forms via the hyperbolic center of mass.
    • Fuhrmann, Paul A.. (2012). A polynomial approach to linear algebra. Springer. New York.
    • Hidalgo, Ruben,Shaska, Tony. (2018). On the field of moduli of superelliptic curves. Higher genus curves in mathematical physics and arithmetic...
    • Joyner, David,Shaska, Tony. (2018). Self-inversive polynomials, curves, and codes. Higher genus curves in mathematical physics and arithmetic...
    • Malmendier, A.,Shaska, T.. The Satake sextic in F-theory. J. Geom. Phys.. 2017. 290-305
    • Malmendier, Andreas,Shaska, Tony. (2017). A universal genus-two curve from Siegel modular forms. SIGMA Symmetry Integrability Geom. Methods...
    • Marden, Morris. (1966). Geometry of polynomials. American Mathematical Society. Providence, R.I..
    • Mattman, Thomas,McKay, John. (1997). Computation of Galois groups over function fields. Math. Comp.. 66. 823
    • Otake, Shuichi. (2013). Counting the number of distinct real roots of certain polynomials by Bezoutian and the Galois groups over the rational...
    • Otake, Shuichi. (2015). A Bezoutian approach to orthogonal decompositions of trace forms or integral trace forms of some classical polynomials....
    • Otake, Shuichi,Shaska, Tony. (2019). Bezoutians and the discriminant of a certain quadrinomials. Algebraic curves and their applications....
    • Rahman, Q. I.,Schmeisser, G.. (2002). Analytic theory of polynomials. The Clarendon Press. Oxford.
    • Ward Smith, Gene. (2000). Some polynomials over Q(t) and their Galois groups. Math. Comp.. 69. 775
    • Zarhin, Yuri G.. (2016). Galois groups of Mori trinomials and hyperelliptic curves with big monodromy. Eur. J. Math.. 2. 360
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno