Ir al contenido

Documat


Yamabe Solitons with potential vector field as torse forming

  • Autores: Yadab ChandraMandal, Shyamal Kumar Hui
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 20, Nº. 3, 2018, págs. 37-47
  • Idioma: inglés
  • DOI: 10.4067/S0719-06462018000300037
  • Enlaces
  • Resumen
    • español

      Resumen Se estudian las variedades Riemannianas cuya métrica es un solitón de Yamabe con vector de potencial que forma un virol (superficie desarrollable) con respecto a conexiones Riemanniana, semisimétrica métrica y proyectiva semisimétrica. Se construye un ejemplo explícito para verificar las hipótesis del teorema en el caso de la conexión Riemanniana.

    • English

      Abstract The Riemannian manifolds whose metric is Yamabe soliton with potential vector field as torse forming admitting Riemannian connection, semisymmetric metric connection and projective semisymmetric connection have been studied. An example is constructed to verify the theorem concerning Riemannian connection.

  • Referencias bibliográficas
    • Barbosa, E.,Ribeiro, E.. (2013). On conformal solutions of the Yamabe flow. Arch. Math.. 101. 79-89
    • Chen, B. Y.. (2015). Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc.. 52. 1535
    • Chen, B. Y.. (2017). Classification of torqued vector fields and its applications to Ricci solitons. Kragujevac J. of Math.. 41. 239
    • Friedmann, A.,Schouten, J. A.. (1924). Über die geometric derhalbsymmetrischen Übertragung. Math. Zeitschr.. 21. 211
    • Hamilton, R. S.. (1988). The Ricci flow on surfaces. Mathematics and general relativity. 71. 237
    • Hamilton, R. S.. (1989). Lectures on geometric flows.
    • Hayden, H. A.. (1932). Subspaces of space with torsion. Proc. London Math. Soc.. 34. 27-50
    • Hui, S. K.,Chakraborty, D.. (2018). Ricci almost solitons on concircular Ricci pseudosymmetric β-Kenmotsu manifolds. Hacettepe J. of Math....
    • Hui, S. K.,Mandal, Y. C.. (2018). Yamabe solitons on Kenmotsu manifolds. Communications in Korean Math. Soc..
    • Mandal, Y. C.,Hui, S. K.. (2018). On the existence of Yamabe gradient solitons. Int. J. Math. Eng. Manag. Sci.. 3. 491
    • Shaikh, A. A.,Hui, S. K.. (2011). On extended generalized φ-recurrent β-Kenmotsu manifolds. Publ. De L’ Inst. Math.. 89. 77-88
    • Shaikh, A. A.,Hui, S. K.. (2010). On pseudo cyclic Ricci symmetric manifolds admitting semisymmetric metric connection. Scientia series A:...
    • Yano, K.. (1940). Concircular geometry I, Concircular transformations. Proc. Imp. Acad. Tokyo. 16. 195-200
    • Yano, K.. (1944). On torse forming direction in a Riemannian space. Proc. Imp. Acad. Tokyo. 20. 340
    • Yano, K.. (1970). On semi-symmetric metric connection. Rev. Roum. Math. Pures et Appl. (Bucharest). 1579
    • Yano, K.,Chen, B. Y.. (1971). On the concurrent vector fields of immersed manifolds. Kodai Math. Sem. Rep.. 23. 343
    • Zhao, P.. (2008). Some properties of projective semisymmetric connections. Int. Math. Forum. 3. 341
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno