Ir al contenido

Documat


Modelos de Series de Tiempo para Predecir el Número de Casos de Variantes Dominantes del SARS-COV-2 Durante las Olas Epidémicas en Chile

  • Autores: Claudia Paz Barría Sandoval, Patricio Andrés Salas Fernández, Guillermo Patricio Ferreira Cabezas
  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 50, Nº. 3, 2022 (Ejemplar dedicado a: Revista Politécnica), págs. 17-26
  • Idioma: español
  • DOI: 10.33333/rp.vol50n3.02
  • Títulos paralelos:
    • Time Series Models for Forecasting the Number of Cases of SARS-COV-2 Dominant Variants During the EpidemicWaves in Chile
  • Enlaces
  • Resumen
    • español

      El COVID-19 y sus variantes han creado una pandemia a nivel global. En Chile, hasta el 28 de febrero del 2022, ya se han infectado más de 3 millones de personas y han muerto más de 42 mil personas. En este artículo, se realiza un estudio comparativo de diferentes modelos matemáticos utilizados para modelar y predecir el número de casos diarios confirmados de COVID-19 en Chile. Esta investigación considera los registros diarios de casos confirmados desde el inicio de la pandemia y por lo tanto incluye los contagiados por las distintas variantes del virus (Delta, Gamma y Omicron), estas variantes han dominado la evolución de los contagios diarios en Chile, siendo la variante Omicron la que ha demostrado tener una mayor tasa de contagios a nivel nacional. El objetivo de este estudio es brindar información relevante sobre la evolución de la pandemia por COVID-19 en Chile mediante modelos de series de tiempo que han sido validados en distintas investigaciones y evaluar su precisión frente a la variante Omicron del virus SARS-CoV-2.

    • English

      COVID-19 and its variants have created a global pandemic. In Chile, as of February 28 2022, more than 3 million people have been infected and more than 42 thousand people have died. In this article, a comparative study of different mathematical models used to model and predict the number of daily confirmed cases of COVID-19 in Chile is carried out. This research considers the daily records of confirmed cases since the beginning of the pandemic and therefore, includes those infected by the different variants of the virus (Delta, Gamma and Omicron), these variants have dominated the evolution of daily infections in Chile, being the Omicron variant the one that has shown to have a higher rate of infection at national level. The objective of this study is to provide relevant information on the evolution of the COVID-19 pandemic in Chile through time series models that have been validated in different investigations and to assess their validity with the appearance of the Omicron variant of the SARS-CoV-2 virus.

  • Referencias bibliográficas
    • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,...
    • Assimakopoulos, V., & Nikolopoulos, K. (2000). The theta model: a decomposition approach to forecasting. International journal of forecasting,...
    • Barría-Sandoval, C., Ferreira, G., Benz-Parra, K., & López-Flores, P. (2021). Prediction of confirmed cases of and deaths caused by COVID-19...
    • Barría-Sandoval, C., Ferreira, G., Méndez, A., & Toffoletto, M. C. (2022). Impact of COVID-19 on deaths from respiratory diseases: Panel...
    • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. (5aed.).JohnWiley&Sons.
    • Brockwell, Peter J & Davis, Richard A. (2016). Introduction to Time Series and Forecasting. (3aed.). Springer.
    • Chakraborty, Tanujit and Ghosh, Indrajit and Mahajan, Tirna and Arora, Tejasvi. (2022). Nowcasting of COVID-19 confirmed
    • cases: Foundations, trends, and challenges. Modeling, Control and Drug Development for COVID-19 Outbreak Prevention. Springer, 1023–1064.
    • Chollet, F. (2018). Keras: The Python Deep Learning library. Astrophysics Source Code Library. ASCL Code Record. https://ascl.net/1806.022
    • De Livera A. M., Hyndman, R. J., & Snyder, R. D. (2012). Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing....
    • Freire-Flores, D., Llanovarced-Kawles, N., Sanchez-Daza, A., & Olivera-Nappa, Á. (2021). On the heterogeneous spread
    • of COVID-19 in Chile. Chaos, Solitons & Fractals, 150, 111156. https://doi.org/10.1016/j.chaos.2021.111156
    • Feroze, Navid. (2021). Assessing the future progression of COVID-19 in Iran and its neighbors using Bayesian models. Infectious Disease Modelling,...
    • Gardner Jr, Everette S and McKenzie, ED. (1985). Forecasting trends in time series. Management Science, 31(10), 1237- 1246. http://dx.doi.org/10.1287/mnsc.31.10.1237
    • Ghafouri-Fard, S., Mohammad-Rahimi, H., Motie, P., Minabi, M. A., Taheri, M., & Nateghinia, S. (2021). Application of machine learning...
    • Holt, CC. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International journal of forecasting, 20(1),...
    • Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., ... & Wang, E. (2020). Forecast: Forecasting...
    • Ibrahim, R. R., & Oladipo, H. O. (2020). Forecasting the spread of COVID-19 in Nigeria using Box- Jenkins modeling procedure. medRxiv,...
    • Instituto de Salud Pública Ministerio de Salud Gobierno de Chile (2020). Vigilancia Genómica SARS-Cov2. Obtenido de: https://vigilancia.ispch.gob.cl/app/varcovid....
    • Lewis, C.D. (1982). Industrial and business forecasting methods. London: Butterworths.
    • McKinney, W. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, 445(1),...
    • Oliphant, T. E. (2006). A guide to NumPy. Trelgol Publishing. https://web.mit.edu/dvp/Public/numpybook.pdf
    • Organización Mundial de la Salud (2020, Marzo). Alocución de apertura del Director General de la OMS en la rueda de prensa sobre la COVID-19...
    • Organización Mundial de la Salud (2021, Marzo). Seguimiento de las variantes del SARS-CoV-2. Obtenido de: https://www.who.int/es/activities/tracking-SARS-CoV-2-variants.
    • Perone, G.(2020). An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy. medRxiv 1-14. https://doi.org/10.1101/2020.04.27.20081539.
    • Roda, Weston C and Varughese, Marie B and Han, Donglin & Li, Michael Y.(2020).Why is it difficult to accurately predict the COVID-19 epidemic?....
    • Sarkar, D., Biswas M. (2020). COVID 19 Pandemic: A Real-time Forecasts & Prediction of Confirmed Cases, Active Cases using the ARIMA model...
    • Secretaría de Comunicaciones - MSGG Gobierno de Chile. (2021, Marzo). Cifras Oficiales COVID-19. Obtenido de: https://www.gob.cl/coronavirus/cifrasoficiales/datos.
    • Shaub, D., & Ellis, P. (2020). forecastHybrid: Convenient Functions for Ensemble Time Series Forecasts. The R package version 5.0.19....
    • Shastri, S., Singh, K., Kumar, S., Kour, P., & Mansotra, V. (2020). Time series forecasting of covid-19 using deep learning models: India-usa...
    • Talkhi, N., Fatemi, N. A., Ataei, Z., & Nooghabi, M. J. (2021). Modeling and forecasting number of confirmed and death caused COVID-19...
    • Tariq, A., Undurraga, E. A., Laborde, C. C., Vogt-Geisse, K., Luo, R., Rothenberg, R., & Chowell, G. (2021). Transmission dynamics and...
    • Team, R.C. (2013). R: A Language and Environment for Statistical Computing. The R Foundation. http://www.R-project.org/
    • Tran, TT and Pham, LT and Ngo, QX.(2020).Forecasting epidemic spread of SARS-CoV-2 using ARIMA model (Case study: Iran). Global Journal of...
    • Vicuña, M. I., Vásquez, C., & Quiroga, B. F. (2021). Forecasting the 2020 COVID-19 epidemic: A multivariate Quasi- Poisson regression...
    • Yonar, Harun and Yonar, Aynur and Tekindal, Mustafa Agah & Tekindal, Melike.(2020). Modeling and Forecasting for the number of cases of...
    • Journal of Medicine and Oncology 4(2): 160–165. https://ejmo.org/10.14744/ejmo.2020.28273/

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno