Ir al contenido

Documat


Modelling the influence of radiata pine log variables on structural lumber production

  • Elvis Gavilán [1] ; Rosa M. Alzamora [1] ; Luis A. Apiolaza [2] ; Katia Sáez [1] ; Juan Pedro Elisseche [1] ; Antonio Pinto [1]
    1. [1] Universidad de Concepción

      Universidad de Concepción

      Comuna de Concepción, Chile

    2. [2] University of Canterbury

      University of Canterbury

      Nueva Zelanda

  • Localización: Maderas: Ciencia y tecnología, ISSN 0717-3644, ISSN-e 0718-221X, Vol. 25, Nº. 1, 2023
  • Idioma: inglés
  • DOI: 10.4067/s0718-221x2023000100402
  • Títulos paralelos:
    • Modelado de la influencia de las variables de troncos de pino radiata en la producción de madera estructural
  • Enlaces
  • Resumen
    • español

      Ejecutamos modelos logit para explicar la variabilidad de la madera estructural de Pinus radiata en 71 troncos no podados de segunda y tercera. La variable de respuesta fue la proporción de madera aserrada con un módulo de elasticidad estático mayor o igual a 8 GPa, p MSG8+, y las variables explicativas fueron el volumen del tronco, índice de rama, rama más grande, índice de entrenudos del tronco, densidad básica de la madera y velocidad acústica. El volumen promedio de p MSG8+ fue de 44,30 % y 36,18 % en el segundo y tercer log respectivamente. Se seleccionaron diez modelos en base al cumplimiento de supuestos estadísticos, su bondad de ajuste y la significación estadística de sus parámetros. Los mejores modelos (R 2- adj. > 0,75) incluyeron la velocidad acústica (AV) como variable explicativa, la cual explicó el 56,25 % de la variabilidad de p MSG8+. Los modelos sin VA presentaron bondad de ajuste entre 0,60 y 0,75 (R 2 - adj.), y las variables con mayor peso para explicar la variabilidad de p MSG8+ fueron el volumen, seguido de la densidad básica de la madera, índice de ramaje y rama más grande. Es posible modelar p MSG8+ a partir de variables logarítmicas incluso cuando no se dispone de la velocidad acústica; sin embargo, esto requiere modelos de densidad básica de la madera calibrados para la zona de cultivo de Pinus radiata

    • English

      We run logit models to explain the variability of Pinus radiata structural lumber in 71 second and third un-pruned logs. The response variable was the proportion of lumber with a static modulus of elasticity greater or equal than 8000 MPa, pMSG8+, and the explanatory variables were log volume, branch index, largest branch, log internode index, wood basic density, and acoustic velocity. The average pMSG8+ volume was 44,30 % and 36,18 % in the second and third log respectively. Ten models were selected based on meeting statistical assumptions, their goodness of fit, and the statistical significance of their parameters. The best models (R2 - adj. > 0,75) included acoustic velocity (AV) as explanatory variable, which explained 56,25 % of the variability of pMSG8+. Models without AV presented goodness of fit ranging from 0,60 to 0,75 (R2 - adj.), and variables with the highest weight to explain the variability of pMSG8+ were volume, followed by wood basic density, branch index, and largest branch. It is possible to model pMSG8+ from log variables even when acoustic velocity is not available; however, this requires wood basic density models calibrated for the Pinus radiata growing zone

  • Referencias bibliográficas
    • Alzamora, R.M.; Apiolaza, L.A.; Evison, D.C. 2013. Using a production approach to estimate economic weights for structural attributes of Pinus...
    • Apiolaza, L.A. 2009. Very early selection for wood quality: screening for early winners. Ann For Sci 66(6): 1-10. https://www.doi.org/10.1051/forest/2009047
    • Arriaga, F.; Monton J.; Segues, E.; Íñiguez-Gonzalez, G. 2013. Determination of the mechanical properties of P. radiata timber by means of...
    • Beall, F.C. 2001. Wood Products: Nondestructive Evaluation. Encyclopedia of Materials: Science and Technology (Second Edition). Elsevier,...
    • Beauregard, R.L.; Gazo, R.; Ball, R.D. 2002. Grade recovery, value, and return-to-log for the production of NZ visual grades (cutting and...
    • Bruce, D. 1982. Butt Log Volume Estimators. For Sci 28(3): 489-503. https://doi.org/10.1093/forestscience/28.3.489
    • Caliro-Saw. 2014. Simulador de aserrío Caliro-Saw, Software desarrollado por Allware y la Universidad Austral de Chile. Chile. (In Spanish)....
    • Chauhan, S.S.; Walker J.C.F. 2006. Variations in acoustic velocity and density with age, and their interrelationships in radiata pine. For...
    • Dickson, R.L.; Raymond C.A.; Joe, W.; Wilkinson C.A. 2003. Segregation of Eucalyptus dunnii logs using acoustics. For Ecol Manag 179(1-3):...
    • A. 2017. Effects of thinning and pruning on stem and crown characteristics of radiata pine (Pinus radiata D. Don). iForest 10(2): 383-390....
    • Gapare, W.J.; Ivković, M.; Baltunis B.S.; Matheson C.A., Wu H.X. 2010. Genetic stability of wood Density and diameter in Pinus radiata D....
    • García-Iruela, A.; García Fernández, F.; García Esteban, L.; de Palacios, P.; Simón, C.; Arriaga, F. 2016. Comparison of modelling using regression...
    • Eng 96: 112-118. https://doi.org/10.1016/j.compositesb.2016.04.036
    • Gelman, A.; Hill, J. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. New York. United...
    • http://www.stat.columbia.edu/~gelman/arm/
    • Grace, J.C.; Carson, M.J. 1993. Prediction of internode length in Pinus radiata stands. N Z J For Sci 23(1): 10-26. http://www.scionresearch.com/__data/assets/pdf_file/0019/17731/NZJFS2311993GRACE10_26.pdf
    • Grant, D.J.; Anton A.; Lind P. 1984. Bending strength, stiffness, and stress-grade of structural Pinus radiata: effect of knots and timber...
    • Gujarati D.N.; Porter D.C. 2010. Econometría. Mc. Graw Hill. México D. F. México (In Spanish). https://www.marcialpons.es/libros/econometria/9786071502940/
    • Ivković, M.; Gapare W.J.; Abarquez A.; Ilic J.; Powell M.B.; Wu H.X. 2009. Prediction of wood stiffness, strength, and shrinkage in juvenile...
    • Ivković, M.; Wu, H.X.; McRae T.A.; Powell M.B. 2006. Developing breeding objectives for P. radiata structural wood production. I. Bioeconomic...
    • Jones, T.G.; Emms, G.W. 2010. Influence of acoustic velocity, density, and knots on the stiffness grade outturn of radiata pine logs. Wood...
    • Kimberley, M.O.; Cown, D.J.; McKinley, R.B.; Moore J.R.; Dowling L.J. 2015. Modelling variation in wood density within and among trees in...
    • Lasserre, J.P.; Mason, E.G.; Watt, M.S. 2005. Effects of genotype and spacing on Pinus radiata (D. Don) corewood stiffness in an 11 year-old...
    • Legg, M.; Bradley, S. 2016. Measurement of stiffness of standing trees and felled logs using acoustics: A review. J Acoust Soc Am 139(2):...
    • Matheson, A.C.; Dickson L.R.; Spencer, D.J: Joe, B.; Ilic, J. 2002. Acoustic segregation of Pinus radiata logs according to stiffness. Ann...
    • Moore, J.R.; Cown, D.J. 2017. Corewood (Juvenile Wood) and Its Impact on Wood Utilization. Curr For Rep 3: 107-118. https://doi.org/10.1007/s40725-017-0055-2
    • R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
    • Ross, R.J. 2015. Nondestructive Evaluation of Wood. Department of Agriculture, Forest Service, Forest Products Laboratory. General Technical...
    • Schmoldt, D.L.; Occeña, L.G.; Abbott, L.A.; Gupta, N.K. 1993. Nondestructive evaluation of hardwood logs: CT scanning, machine vision and...
    • Soto, L.; Valenzuela, L.; Lasserre, J.P. 2012. Efecto de la densidad de plantación inicial en el módulo de elasticidad dinámico de árboles...
    • Tsehaye, A.; Buchanan A.H.; Walker, J.C.F. 2000. Selecting trees for structural timber. Holz Roh Werkst 58(3): 162-167. https://doi.org/10.1007/s001070050407
    • Tsuchikawa, S. 2007. A review of recent near infrared research for wood and paper. Appl Spectros Rev 42(1): 43-71. https://doi.org/10.1080/05704920601036707...
    • Waghorn, M.J.; Watt M.S.; Mason, E.G. 2007. Influence of tree morphology, genetics, and initial stand density on outerwood modulus of elasticity...
    • Schimleck, L; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. 2019. Non-Destructive...
    • Xu, P., Walker, J.C.F. 2004. Stiffness gradients in radiata pine trees. Wood Sci Technol 38(1):1-9. https://doi.org/10.1007/s00226-003-0188-2

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno