Zouhair Diab, María Teresa de Bustos Muñoz, Miguel Ángel López Guerrero , Raquel Martínez Lucas
We apply the averaging method of first order to study the maximum number of limit cycles of the ordinary differential systems of the form x¨ + x = ε (f1(x, y)y + f2 (x, y)), y¨ + y = ε (g1(x, y)x + g2 (x, y)), where f1(x, y) and g1(x, y) are real cubic polynomials; f2(x, y) and g2(x, y) are real quadratic polynomials.
Furthermore ε is a small parameter
© 2008-2024 Fundación Dialnet · Todos los derechos reservados