Ir al contenido

Documat


On Mean Sensitive Tuples of Discrete Amenable Group Actions

  • Xiusheng Liu [1] ; Jiandong Yin [1]
    1. [1] Nanchang University

      Nanchang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let (X, G) be a G-system which means that X is a perfect compact metric space and G is a countable discrete infinite amenable group continuously acting on X. In this paper, for an invariant measureμof(X, G) and an integer n larger than 2, we introduce firstly the notions of μ-mean n-sensitive tuple with respect to a Følner sequence of G and μ-n-sensitive in the mean tuple with respect to a Følner sequence of G and we show that if μ is ergodic, then every measure-theoretic n-entropy tuple for μ is a μ-mean n-sensitive tuple with respect to each tempered Følner sequence of G. Then we introduce the concepts of mean n-sensitive tuple with respect to a Følner sequence of G and n-sensitive in the mean tuple with respect to a Følner sequence of G and we prove that each n-entropy tuple is a mean n-sensitive tuple with respect to each tempered Følner sequence of G for minimal G-systems. Finally, we introduce the notion of weakly n-sensitive in the mean tuple with respect to a Følner sequence of G and we obtain that the maximal mean equicontinuous factor with respect to a Følner sequence of G can be induced by the smallest invariant closed equivalence relation containing all weakly sensitive in the mean pairs with respect to the same Følner sequence of G.

  • Referencias bibliográficas
    • 1. Akin, E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions. Springer, Berlin (2013)
    • 2. Akin, E., Kolyada, S.: Li–Yorke sensitivity. Nonlinearity 16(4), 1421–1433 (2003)
    • 3. Argabright, L., Wilde, C.: Semigroups satisfying a strong Følner condition. Proc. Am. Math. Soc. 18, 587–591 (1967)
    • 4. Auslander, J.: Minimal Flows and Their Extensions. Elsevier, Amsterdam (1988)
    • 5. Auslander, J., Yorke, J.: Interval maps, factors of maps, and chaos. Tohoku Math. J. 32(2), 177–188 (1980)
    • 6. Bergelson, V., Hindman, N., McCutcheon, R.: Notions of size and combinatorial properties of quotient sets in semigroups. Topol. Proc. 23,...
    • 7. Blanchard, F.: A disjointness theorem involving topological entropy. Bull. Soc. Math. Fr. 121(4), 465–478 (1993)
    • 8. Blanchard, F., Glasner, E., Host, B.: A variation on the variational principle and applications to entropy pairs. Ergod. Theory Dyn. Syst....
    • 9. Blanchard, F., Host, B., Maass, A., et al.: Entropy pairs for a measure. Ergod. Theory Dyn. Syst. 15(4), 621–632 (1995)
    • 10. Blanchard, F., Host, B., Ruette, S.: Asymptotic pairs in positive-entropy systems. Ergod. Theory Dyn. Syst. 22(3), 671–686 (2002)
    • 11. Downarowicz, T., Huczek, D., Zhang, G.: Tilings of amenable groups. J. Reine Angew. Math. 747, 277–298 (2019)
    • 12. Ellis, R., Gottschalk, W.: Homomorphisms of transformation groups. Trans. Am. Math. Soc. 94(2), 258–271 (1960)
    • 13. Gabriel, F., Maik, G., Daniel, L.: The structure of mean equicontinuous group actions. Isr. J. Math. 247, 75–123 (2022)
    • 14. Garcia-Ramos, F., Li, J., Zhang, R.: When is a dynamical system mean sensitive? Ergod. Theory Dyn. Syst. 39(6), 1608–1636 (2019)
    • 15. Glasner, E.: Ergodic Theory via Joinings. American Mathematical Soc, Providence (2003)
    • 16. Glasner, E., Ye, X.: Local entropy theory. Ergod. Theory Dyn. Syst. 29(2), 321–356 (2009)
    • 17. Hindman, N., Strauss, D.: Density in arbitrary semigroups. Semigroup Forum. 73(2), 273–300 (2006)
    • 18. Huang, W., Ye, X.: A local variational relation and applications. Isr. J. Math. 151(1), 237–279 (2006)
    • 19. Huang, W., Ye, X., Zhang, G.: Local entropy theory for a countable discrete amenable group action. J. Funct. Anal. 261(4), 1028–1082 (2011)
    • 20. Kerr, D., Li, H.: Independence in topological and C∗-dynamics. Math. Ann. 338(4), 869–926 (2007)
    • 21. Kerr, D., Li, H.: Ergodic Theory: Independence and Dichotomies. Springer, Berlin (2016)
    • 22. Lian, Y., Huang, X., Li, Z.: The proximal relation, regionally proximal relation and Banach proximal relation for amenable group actions....
    • 23. Lindenstrauss, E.: Pointwise theorems for amenable groups. Electron. Res. Announc. AMS. 5, 82–90 (1999)
    • 24. Lindenstrauss, E.: Pointwise theorems for amenable groups. Invent. Math. 146(2), 259–295 (2001)
    • 25. Li, J., Tu, S.: Density-equicontinuity and density-sensitivity. Acta Math. Sin. 37(2), 345–361 (2021)
    • 26. Li, J., Tu, S., Ye, X.: Mean equicontinuity and mean sensitivity. Ergod. Theory Dyn. Syst. 35(8), 2587–2612 (2015)
    • 27. Li, J., Ye, X.: Recent development of chaos theory in topological dynamics. Acta Math. Sin. Engl. Ser. 32(1), 83–114 (2016)
    • 28. Li, J., Ye, X., Yu, T.: Equicontinuity and sensitivity in mean forms. J. Dyn. Differ. Equ. 34(1), 133–154 (2022)
    • 29. Li, J., Yu, T.: On mean sensitive tuples. J. Differ. Equ. 297(2), 175–200 (2021)
    • 30. Liu, X., Yin, J.: Density-equicontinuity and density-Sensitivity of discrete amenable group actions. J. Dyn. Differ. Equ. (2022). https://doi.org/10.1007/s10884-022-10169-8
    • 31. Park, K., Siemaszko, A.: Relative topological Pinsker factors and entropy pairs. Monatsh. Math. 134(1), 67–79 (2001)
    • 32. Peterson, J.: Lecture Notes on Ergodic Theory. Lecture Notes, Vanderbilt (2011). https://math. vanderbilt.edu/peters10/teaching/Spring2011/ErgodicTheoryNotes.pdf
    • 33. Phelps, R.: Lectures on Choquet’s Theorem. Springer, Berlin (2001)
    • 34. Qiu, J., Zhao, J.: A note on mean equicontinuity. J. Dyn. Differ. Equ. 32(1), 101–116 (2020)
    • 35. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1982)
    • 36. Weiss, B.: Actions of amenable groups. Top. Dyn. Ergod. Theory 310, 226–262 (2003)
    • 37. Xiong, J.: Chaos in a topologically transitive system. Sci. China Ser. A. 48, 929–939 (2005)
    • 38. Yan, K., Liu, Q., Zeng, F.: Classification of transitive group actions. Discrete Contin. Dyn. Syst. 41(12), 5579–5607 (2021)
    • 39. Yan, K., Zeng, F.: Mean proximality, mean sensitivity and mean Li–Yorke chaos for amenable group actions. Int. J. Bifurc. Chaos Appl....
    • 40. Ye, X., Zhang, R.: On sensitive sets in topological dynamics. Nonlinearity 21(7), 1601–1620 (2008)
    • 41. Zhu, B., Huang, X., Lian, Y.: The systems with almost Banach mean equicontinuity for abelian group actions. Acta Math. Sin. 42(3), 919–940...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno