Ir al contenido

Documat


Reducibility for a Class of Nonlinear Quasi-Periodic Systems under Brjuno-Russmann’s Non-resonance Conditions

  • Chunpeng Zhu [1] ; Jia Li
    1. [1] Xuzhou Institute of Technology

      Xuzhou Institute of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper studies the following analytic quasi-periodic nonlinear system x˙ = (A + εQ(t, ε))x + εg(t, ε) + h(x, t, ε), where A is a constant matrix and h = O(x2). We prove that under Brjuno-Russmann’s non-resonance conditions and non-degeneracy conditions, for most small enough parameter ε, this nonlinear system is reducible by a quasi-periodic mapping.

  • Referencias bibliográficas
    • 1. Johnson, R.A., Sell, G.R.: Smoothness of spectral subbundles and reducibility of quasiperodic linear differential systems. J. Dyn. Differ....
    • 2. Jorba, A., Simó, C.: On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differ. Equ. 98, 111–124...
    • 3. Eliasson, L.H.: Floquent solutions for the one-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)
    • 4. Her, H., You, J.: Full measure reducibility for generic one-parameter family of quasi-periodic linear systems. J. Dyn. Differ. Equ. 20,...
    • 5. Li, J., Zhu, C.: On the reducibility of a class of finitely differentiable quasi-periodic linear systems. J. Math. Anal. Appl. 413(1),...
    • 6. Jorba, A., Simó, C.: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27, 1704–1737 (1996)
    • 7. Li, J., Zhu, C., Chen, S.: On the reducibility of a class of quasi-periodic Hamiltonian systems with small perturbation parameter near...
    • 8. Rüssmann, H.: Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy...
    • 9. Xu, J., Lu, X.: On the reducibility of two-dimensional linear quasi-periodic systems with small parameter. Ergodic Theor. Dyn. Syst. 35,...
    • 10. Xu, J., Wang, K., Zhu, M.: On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters. P. Am. Math. Soc....
    • 11. Wang, X., Xu, J.: On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium...
    • 12. Li, J., Xu, J.: On the reducibility of a class of almost periodic Hamiltonian systems. Discrete Cont. Dyn. Syst. Ser. B 26, 3905–3919...
    • 13. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019...
    • 14. Chavaudret, C., Marmi, S.: Reducibility of cocycles under a Brjuno-Rüssmann arithmetical condition. arXiv preprint, arXiv:1107.4704 (2011)
    • 15. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190, 209–260 (2012)
    • 16. Zhang, D., Xu, J.: On the reducibility of analytic quasi-periodic system with Liouvillean basic frequencies. Commun. Math. Phys. 21, 1417–1445...
    • 17. Zhang, D., Xu, J., Wu, H., Xu, X.: On the reducibility of linear quasi-periodic system with Liouvillean basic frequencies and multiple...
    • 18. Zhang, D., Xu, J.: Reducibility of a class of nonlinear quasi-periodic systems with Liouvillean basic frequencies. Ergodic Theor. Dyn....
    • 19. Pöschel, J.: Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Commun. Math. Phys. 127, 351–393 (1990)
    • 20. Whitney, H.: Analytical extensions of differentiable functions defined in closed sets. Trans. A. M. S. 36, 63–89 (1934)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno