Ir al contenido

Documat


Existence and Multiplicity of Sign-Changing Solutions for Klein–Gordon Equation Coupled with Born–Infeld Theory with Subcritical Exponent

  • Ziheng Zhang [1] ; Jianlun Liu
    1. [1] TianGong University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we consider the following Klein–Gordon equation coupled with Born– Infeld theory −u + [m2 − (ω + φ)2]u = |u|p−2u in R3, φ + β4φ = 4π(ω + φ)u2 in R3, where 2 < p < 6, ω > 0, β > 0 and m is a real constant. Assuming that 0 < ω < p 2 − 1|m| and 2 < p < 4 or 0 <ω< |m| and 4 ≤ p < 6, we obtain the existence and multiplicity of sign-changing solutions via the method of invariant sets of descending flow.

  • Referencias bibliográficas
    • 1. Albuquerque, F., Chen, S., Li, L.: Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory...
    • 2. Bartsch, T., Liu, Z.: On a superlinear elliptic p-Laplacian equation. J. Differ. Eqs. 198, 149–175 (2004)
    • 3. Bartsch, T., Liu, Z., Weth, T.: Sign changing solutions of superlinear Schrödinger equations. Comm. Partial Differ. Eqs. 29, 25–42 (2004)
    • 4. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. 91(1), 129–152 (2005)
    • 5. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equation. Rev. Math. Phys. 14,...
    • 6. Born, M.: On the quantum theory of the electromagnetic field. Proc. R. Soc. Edinburgh Sect. A 143, 410–437 (1934)
    • 7. Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. Lond. Ser. A 144, 425–451 (1934)
    • 8. Che, G., Chen, H.: Infinitely many solutions for the Klein-Gordon equation with sublinear nonlinearity coupled with Born-Infeld theory....
    • 9. Chen, S., Li, L.: Multiple solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on R3. J. Math. Anal....
    • 10. Chen, S., Liu, J., Wang, Z.: Localized nodal solutions for a critical nonlinear Schrödinger equation. J. Funct. Anal. 277(2), 594–640...
    • 11. Chen, S., Song, S.: The existence of multiple solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with...
    • 12. D’Avenia, P., Pisani, L.: Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations. Electron. J. Differ. Eqs. 26, 1–13...
    • 13. Fortunato, D., Orsani, L.: Born-Infeld type equations for electrostatic fields. J. Math. Phys. 11, 5698– 5706 (2002)
    • 14. Gu, L., Jin, H., Zhang, J.: Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth at...
    • 15. He, C., Li, L., Chen, S., O’Regan, D.: Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with...
    • 16. Liu, J., Liu, X., Wang, Z.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differ. Eqs....
    • 17. Liu, Z., Sun, J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J....
    • 18. Liu, Z., Ouyang, Z., Zhang, J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation...
    • 19. Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear SchrödingerPoisson system. Ann. Mat. Pura Appl....
    • 20. Mugnai, D.: Coupled Klein-Gorndon and Born-Infeld type equations: looking for solitary waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng....
    • 21. Peral, A.: Multiplicity of solutions for the p-laplacian. Second School of Nonlinear Functional Analysis and Applications to Difffferential...
    • 22. Shuai, W., Wang, Q.: Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3....
    • 23. Struwe, M.: Variational methods, applications to nonlinear partial differential equations and Hamiltonian systems. Springer-Verlag, Berlin...
    • 24. Sun, J., Ma, S.: Infinitely many sign-changing solutions for the Brezis-Nirenberg problem. Commun. Pure Appl. Anal. 13, 2317–2330 (2014)
    • 25. Teng, K., Zhang, K.: Existence of solitary wave solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with...
    • 26. Wang, J., Xu, J.: Existence of positive and sign-changing solutions to a coupled elliptic system with mixed nonlinearity growth. Ann....
    • 27. Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3. Calc. Var. Partial Differ. Eqs. 52(3–4),...
    • 28. Wen, L., Tang, X., Chen, S.: Infinitely many solutions and least energy solutions for Klein-Gordon equation coupled with Born-Infeld theory....
    • 29. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
    • 30. Yu, Y.: Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory. Ann. Inst. H. Poincaré Anal. Non Linéaire...
    • 31. Zhang, Q.: Sign-changing solutions for a kind of Klein-Gordon-Maxwell system. J. Math. Phys. 62(9), 091507 (2021)
    • 32. Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a 3-linear growth nonlinearity. J. Math....
    • 33. Zou, W., Schechter, M.: Critical point theory and its applications. Springer, New York, NY (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno