Ir al contenido

Documat


Discrete Caputo Delta Fractional Economic Cobweb Models

  • Churong Chen [1]
    1. [1] Guangdong Polytechnic Normal University

      Guangdong Polytechnic Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider discrete Caputo delta fractional economic cobweb models.

      To be more specific, we first discuss some properties of discrete Mittag–Leffler functions, particularly the asymptotic behavior. Some sufficient conditions for the stability of solutions of specific fractional difference equations are presented. In the end, we conclude with a numerical example.

  • Referencias bibliográficas
    • 1. Gandolfo, G.: Economic dynamics: methods and models, volume 16 of Advanced Textbooks in Economics. North-Holland Publishing Co., Amsterdam-New...
    • 2. Gandolfo, G.: Economic Dynamics, 4th edn. Springer, Heidelberg (2009)
    • 3. Chen, C., Bohner, M., Jia, B.: Caputo fractional continuous cobweb models. J. Comput. Appl. Math. 374, 112734 (2020)
    • 4. Bohner, M., Hatipo ˘glu, V.F.: Cobweb model with conformable fractional derivatives. Math. Methods Appl. Sci. 41(18), 9010–9017 (2018)
    • 5. Bohner, M., Hatipo ˘glu, V.F.: Dynamic cobweb models with conformable fractional derivatives. Nonlinear Anal. Hybrid Syst 32, 157–167 (2019)
    • 6. Salahshour, S., Ahmadian, A., Allahviranloo, T.: A new fractional dynamic cobweb model based on nonsingular kernel derivatives. Chaos Soliton...
    • 7. Srivastava, H.M., Raghavan, D., Nagarajan, S.: A comparative study of the stability of some fractionalorder cobweb economic models. Rev....
    • 8. Atici, F.M., Eloe, P.W.: Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41(2), 353–370 (2011)
    • 9. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981–989 (2009)
    • 10. Goodrich, C.S.: Solutions to a discrete right-focal fractional boundary value problem. Int. J. Differ. Equ. 5(2), 195–216 (2010)
    • 11. Chen, C., Jia, B., Liu, X., Erbe, L.: Existence and uniqueness theorem of the solution to a class of nonlinear nabla fractional difference...
    • 12. Chen, C., Bohner, M., Jia, B.: Ulam-Hyers stability of caputo fractional difference equations. Math. Methods Appl. Sci. 42(18), 7461–7470...
    • 13. Chen, C., Bohner, M., Jia, B.: Existence and uniqueness of solutions for nonlinear caputo fractional difference equations. Turkish J....
    • 14. Derbazi, C., Baitiche, Z., Feˇckan, M.: Some new uniqueness and Ulam stability results for a class of multiterms fractional differential...
    • 15. Derbazi, C., Baitiche, Z., Zada, A.: Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-caputo...
    • 16. Abdeljawad, T., Ali, M.A., Mohammed, P.O., Kashuri, A.: On inequalities of Hermite-HadamardMercer type involving Riemann-Liouville fractional...
    • 17. Alqudah, M.A., Kashuri, A., Mohammed, P.O., Abdeljawad, T., Raees, M., Anwar, M., Hamed, Y.S.: Hermite-Hadamard integral inequalities...
    • 18. Mohammed, P.O., Abdeljawad, T., Alqudah, M.A., Jarad, F.: New discrete inequalities of HermiteHadamard type for convex functions. Adv....
    • 19. Boutiara, A., Etemad, S., Alzabut, J., Hussain, A., Subramanian, M., Rezapour, S.: On a nonlinear sequential four-point fractional q-difference...
    • 20. Boutiara, A., Benbachir, M.: Existence and uniqueness results to a fractional q-difference coupled system with integral boundary conditions...
    • 21. Boutiara, A., Benbachir, M., Kaabar, M.K.A., Martínez, F., Samei, M.E., Kaplan, M.: Explicit iteration and unbounded solutions for fractional...
    • 22. Guo-Cheng, W., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96–99 (2014)
    • 23. Wu, G.-C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75(1–2), 283– 287 (2014)
    • 24. Baoguo, J.: The asymptotic behavior of Caputo delta fractional equations. Math. Methods Appl. Sci. 39(18), 5355–5364 (2016)
    • 25. Goodrich, C.S., Peterson, A.C.: Discrete fractional calculus. Springer, Cham (2015)
    • 26. Ferreira, R.A.C.: Discrete Fractional Calculus and Fractional Difference Equations. Springerbriefs in mathematics, Springer, Cham (2022)
    • 27. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer monographs...
    • 28. Abdeljawad, T.: On riemann and caputo fractional differences. Comput. Math. Appl. 62(3), 1602–1611 (2011)
    • 29. Guo-Cheng, W., Abdeljawad, T., Liu, J., Baleanu, D., Kai-Teng, W.: Mittag-Leffler stability analysis of fractional discrete-time neural...
    • 30. Leonhard Paul Euler. Letter to goldbach. Euler Archive [E00715]. 1729
    • 31. Carl Friedrich Gauss. Disquisitiones arithmeticae. Yale University Press, New Haven, Conn.-London: Translated into English by Arthur A....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno