Ir al contenido

Documat


Linearization and Perturbations of Piecewise Smooth Vector Fields with a Boundary Equilibrium

  • Tao Li [1] ; Xingwu Chen [2]
    1. [1] Southwestern University of Finance and Economics

      Southwestern University of Finance and Economics

      China

    2. [2] Sichuan University

      Sichuan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we study the linearization and perturbations of planar piecewise smooth vector fields that consist of two smooth vector fields separated by the straight line y = 0 and sharing the origin as a non-degenerate equilibrium. In the sense of - equivalence, we provide a sufficient condition for piecewise linearization near the origin, generalizing the classical linearization theorem to piecewise smooth vector fields. This condition is hard to be weakened because there exist vector fields that are not piecewise linearizable when this condition is not satisfied. Then a necessary and sufficient condition for local -structural stability is established when the origin is still an equilibrium of both smooth vector fields under perturbations. In the opposition to this case, we prove that for any piecewise smooth vector field studied in this paper there are perturbations with crossing limit cycles bifurcating from the origin.Moreover, besides the fold-fold type given in previous publications we find some new types of singularities, such as types of center-center, center-saddle and saddle-saddle, to birth any finitely or infinitely many crossing limit cycles.

  • Referencias bibliográficas
    • 1. Buzzi, C.A., Carvalho, T., Euzébio, R.D.: On Poincaré-Bendixson theorem and non-trivial minimal sets in planar nonsmooth vector fields....
    • 2. Buzzi, C.A., Carvalho, T., Teixeira, M.A.: Birth of limit cycles bifurcating from a nonsmooth center. J. Math. Pures Appl. 102, 36–47 (2014)
    • 3. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics....
    • 4. Carvalho, T., Cardoso, J.L., Tonon, D.J.: Canonical forms for codimension one planar piecewise smooth vector fields with sliding region....
    • 5. Carvalho, T., Tonon, D.J.: Normal forms for codimension one planar piecewise smooth vector fields. Int. J. Bifurc. Chaos 24, 1450090 (2014)
    • 6. Castillo, J., Llibre, J., Verduzco, F.: The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems. Nonlinear...
    • 7. Chen, H., Duan, S., Tang, Y., Xie, J.: Global dynamics of a mechanical system with dry friction. J. Differ. Equ. 265, 5490–5519 (2018)
    • 8. Chen, X., Romanovski, V.G., Zhang,W.: Degenerate Hopf bifurcations in a family of FF-type switching systems. J. Math. Anal. Appl. 432,...
    • 9. Chen, X., Zhang, W.: Normal form of planar switching systems. Disc. Cont. Dyn. Syst. 36, 6715–6736 (2016)
    • 10. Coll, B., Gasull, A., Prohens, R.: Degenerate Hopf bifurcation in discontinuous planar systems. J. Math. Anal. Appl. 253, 671–690 (2001)
    • 11. da Cruz, L.P.C., Novaes, D.D., Torregrosa, J.: New lower bound for the Hilbert number in piecewise quadratic differential systems. J....
    • 12. di Bernardo, M., Budd, C.J., Champneys, A.R.: Grazing, skipping and sliding: Analysis of the nonsmooth dynamics of the dc/dc buck converter....
    • 13. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical systems: Theory and Applications. Applied Mathematical...
    • 14. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)
    • 15. Giannakopoulos, F., Pliete, K.: Planar systems of piecewise linear differential equations with a line of discontinuity. Nonlinearity 14,...
    • 16. Glendinning, P.: Classification of boundary equilibrium bifurcations in planar Filippov systems. Chaos 26, 013108 (2016)
    • 17. Guardia, M., Seara, T.M., Teixeira, M.A.: Generic bifurcations of low codimension of planar Filippov systems. J. Differ. Equ. 250, 1967–2023...
    • 18. Guysinsky, M., Hasselblatt, B., Rayskin, V.: Differentiability of the Hartman–Grobman linearization. Disc. Cont. Dyn. Syst. 9, 979–984...
    • 19. Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differ. Equ. 248, 2399–2416 (2010)
    • 20. Hartman, P.: On the local linearization of differential equations. Proc. Am. Math. Soc. 14, 568–573 (1963)
    • 21. Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York (1964)
    • 22. Kristiansen, K.U., Hogan, S.J.: Regularizations of two-fold bifurcations in planar piecewise smooth systems using blowup. SIAM J. Appl....
    • 23. Küpper, T., Moritz, S.: Generalized Hopf bifurcation for non-smooth planar systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng....
    • 24. Kuznetsov, Yu.A., Rinaldi, S., Gragnani, A.: One parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13, 2157–2188...
    • 25. Lasota, A., Strauss, A.: Asymptotic behavior for differential equations which cannot be locally linearized. J. Differ. Equ. 10, 152–172...
    • 26. Liang, F., Han, M.: Degenerate Hopf bifrucation in nonsmooth planar systems. Int. J. Bifurc. Chaos 22, 1250057 (2012)
    • 27. Reves, C.B., Larrosa, J., Seara, T.M.: Regularization around a generic codimension one fold-fold singularity. J. Differ. Equ. 265, 1761–1838...
    • 28. Sell, G.R.: Smooth linearization near a fixed point. Am. J. Math. 107, 1035–1091 (1985)
    • 29. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79, 809–824 (1957)
    • 30. Tang, S., Liang, J., Xiao, Y., Cheke, R.A.: Sliding bifurcations of Filippov two stage pest control models with economic thresholds. SIAM...
    • 31. Wang, A., Xiao, Y.: A Filippov system describing media effects on the spread of infectious diseases. Nonlin. Anal. Hybrid Syst. 11, 84–97...
    • 32. Wei, L., Zhang, X.: Normal form and limit cycle bifurcation of piecewise smooth differential systems with a center. J. Differ. Equ. 261,...
    • 33. Yang, J., Han, M.: On Hopf bifurcations of piecewise planar Hamiltonian systems. J. Differ. Equ. 250, 1026–1051 (2011)
    • 34. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. Science Publisher, in Chinese(1985); Transl. Math....
    • 35. Zhang, W., Lu, K., Zhang, W.: Differentiability of the conjugacy in the Hartman–Grobman Theorem. Trans. Am. Math. Soc. 369, 4995–5030...
    • 36. Zhang, W., Zhang, W.: Sharpness for C1 linearization of planar hyperbolic diffeomorphisms. J. Differ. Equ. 257, 4470–4502 (2014)
    • 37. Zou, Y., Küpper, T., Beyn, W.J.: Generalized Hopf bifurcation for planar Filippov systems continuous at the origin. J. Nonlinear Sci....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno