Ir al contenido

Documat


Viral Infection Model with Diffusion and Distributed Delay: Finite-Dimensional Global Attractor

  • Autores: Alexander Rezounenko
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study a virus dynamics model with reaction-diffusion, logistic growth terms and a general non-linear infection rate functional response. The model has a distributed delay, including the case of state-selective delay. We construct a dynamical system in a Hilbert space and prove the existence of a finite-dimensional global attractor.

  • Referencias bibliográficas
    • 1. Adams, R.A., Fournier, J.F.: Sobolev spaces. Elsevier, 2nd Edition, 320 p (2003)
    • 2. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340...
    • 3. Carloni, G., Crema, A., Valli, M.B., Ponzetto, A., Clementi, M.: HCV infection by cell-to-cell transmission: choice or necessity? Curr....
    • 4. Chueshov, I.D.: Introduction to the theory of infinite-dimensional dissipative systems, acta, Kharkov, 1999, english translation (2002)....
    • 5. Chueshov, I.D., Rezounenko, A.V.: Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Commun....
    • 6. Chueshov, I.: Dynamics of Quasi-Stable Dissipative Systems. Springer, Cham (2015). https://doi.org/ 10.1007/978-3-319-22903-4
    • 7. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for tropic interaction. Ecology 56, 881–892 (1975)
    • 8. Diekmann, O., van Gils, S., Verduyn, Lunel S., Walther, H.-O.: Delay Equations: Functional, Complex, and Nonlinear Analysis. Springer-Verlag,...
    • 9. Gourley, S.A., Kuang, Y., Nagy, J.D.: Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dyn. 2,...
    • 10. Hale, J.K.: Theory of Functional Differential Equations. Springer, Berlin- Heidelberg- New York (1977)
    • 11. Hattaf, K., Yousfi, N.: A generalized HBV model with diffusion and two delays. Comput. Math. Appl. 69, 31–40 (2015). https://doi.org/10.1016/j.camwa.2014.11.010
    • 12. Hattaf, K., Yousfi, N.: A class of delayed viral infection models with general incidence rate and adaptive immune response. Int. J. Dyn....
    • 13. Hattaf, K.: On the stability and numerical scheme of fractional differential equations with application to biology. Computation 10, 97...
    • 14. Hews, S., Eikenberry, S., Nagy, J.D., et al.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J....
    • 15. Huang, G., Ma, W., Takeuchi, Y.: Global analysis for delay virus dynamics model with BeddingtonDeAngelis functional response. Appl. Math....
    • 16. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering. Academic Press...
    • 17. Martin, R.H., Jr., Smith, H.L.: Abstract functional-differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc. 321,...
    • 18. McCluskey, C., Yang, Yu.: Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear...
    • 19. Murray, J.M., Kelleher, A.D., Cooper, D.A.: Timing of the components of the HIV life cycle in productively infected CD4+ T cells in...
    • 20. Nakata, Y.: Global dynamics of a cell mediated immunity in viral infection models with distributed delays. J. Math. Anal. Appl. 375(1),...
    • 21. Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses. Science 272, 74–79 (1996)
    • 22. Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span,...
    • 23. Rezounenko, A., Wu, J.: A non-local PDE model for population dynamics with state-selective delay: local theory and global attractors....
    • 24. Rezounenko, A.V.: Partial differential equations with discrete and distributed state-dependent delays. J. Math. Anal. Appl. 326, 1031–1045...
    • 25. Rezounenko, A.V.: Differential equations with discrete state-dependent delay: Uniqueness and wellposedness in the space of continuous...
    • 26. Rezounenko, A.V.: Non-linear partial differential equations with discrete state-dependent delays in a metric space. Nonlinear Anal. Theory...
    • 27. Rezounenko, A.V., Zagalak, P.: Non-local PDEs with discrete state-dependent delays: well-posedness in a metric space. Discrete Contin....
    • 28. Rezounenko, A.V.: Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete Contin....
    • 29. Rezounenko, A.V.: Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and...
    • 30. Rezounenko, A.V.: Viral infection model with diffusion and state-dependent delay: stability of classical solutions. Discrete Contin. Dyn....
    • 31. Shudo, E., Ribeiro, R.M., Talal, A.H., Perelson, A.S.: A hepatitis C viral kinetic model that allows for time-varying drug effectiveness....
    • 32. Smith, H.L.: Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and...
    • 33. Smith, H.: Introduction to Delay Differential Equations with Sciences Applications to the Life, Texts in Applied Mathematics, vol. 57....
    • 34. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, BerlinHeidelberg-New York (1988)
    • 35. Travis, C.C., Webb, G.F.: Existence and stability for partial functional differential equations. Transact. AMS 200, 395–418 (1974)
    • 36. Wang, X., Liu, S.: A class of delayed viral models with saturation infection rate and immune response. Math. Methods Appl. Sci. 36(2),...
    • 37. Wang, J., Huang, G., Takeuchi, Y.: Global asymptotic stability for HIV-1 dynamics with two distributed delays. Math. Med. Biol. 29, 283–300...
    • 38. Wang, W., Ren, X., Ma, W., Lai, X.: New insights into pharmacologic inhibition of pyroptotic cell death by necrosulfonamide: a PDE model....
    • 39. Wang, W., Wang, X., Feng, Z.: Time periodic reaction-diffusion equations for modeling 2-LTR dynamics in HIV-infected patients. Nonlinear...
    • 40. World Health Organization, Global hepatitis report-2017, ISBN: 978-92-4-156545-5 http://apps.who. int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf?ua=1
    • 41. World Health Organization, World health statistics 2022: monitoring health for the SDGs, sustainable development goals, 2022, Global report,...
    • 42. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno