Ir al contenido

Documat


Approximate Controllability of Non-autonomous Second Order Impulsive Functional Evolution Equations in Banach Spaces

  • Autores: Sumit Arora, Soniya Singh, Manil T. Mohan, Jaydev Dabas
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article investigates the approximate controllability of second order nonautonomous functional evolution equations involving non-instantaneous impulses and nonlocal conditions. First, we discuss the approximate controllability of second order linear system in detail, which lacks in the existing literature. Then, we derive sufficient conditions for approximate controllability of our system in separable reflexive Banach spaces via linear evolution operator, resolvent operator conditions, and Schauder’s fixed point theorem. Moreover, in this paper, we define proper identification of resolvent operator in Banach spaces. Finally, we provide two concrete examples to validate our results.

  • Referencias bibliográficas
    • 1. Ahmed, H.M., El-Borai, M.M., El Bab, A.O., Ramadan, M.E.: Approximate controllability of non-instantaneous impulsive Hilfer fractional...
    • 2. Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of the non-autonomous impulsive evolution equation with state-dependent...
    • 3. Arora, S., Singh, S., Dabas, J., Mohan, M.T.: Approximate controllability of semilinear impulsive functional differential system with nonlocal...
    • 4. Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces....
    • 5. Arora, U., Sukavanam, N.: Approximate controllability of second order semilinear stochastic system with nonlocal conditions. Appl. Math....
    • 6. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York (1993)
    • 7. Barbu, V.: Controllability and Stabilization of Parabolic Equations. Springer, New York (2018)
    • 8. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)
    • 9. Bochenek, J.: Existence of the fundamental solution of a second order evolution equation. Ann. Polon. Math. 66, 15–35 (1997)
    • 10. Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a...
    • 11. Chen, F., Sun, D., Shi, J.: Periodicity in a food-limited population model with toxicants and state dependent delays. J. Math. Anal. Appl....
    • 12. Colao, V., Muglia, L., Xu, H.K.: Existence of solutions for a second order differential equation with non-instantaneous impulses and delay....
    • 13. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes. Cambridge University...
    • 14. Ekeland, I., Turnbull, T.: Infinite-Dimensional Optimization and Convexity. The University of Chicago press, Chicago and London (1983)
    • 15. Feckan, M., Wang, J.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal 46, 915–933 (2015)
    • 16. Fu, X.: Approximate controllability of semilinear non-autonomous evolution systems with statedependent delay. Evol. Equ. Control Theory...
    • 17. Fu, X., Rong, H.: Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions. Autom. Remote...
    • 18. Grudzka, A., Rykaczewski, K.: On approximate controllability of functional impulsive evolution inclusions in a Hilbert space. J. Optim....
    • 19. Guedda, L.: Some remarks in the study of impulsive differential equations and inclusions with delay. Fixed Point Theory 12, 349–354 (2011)
    • 20. Henriquez, H.R.: Existence of solutions of non-autonomous second order functional differential equations with infinite delay. Nonlinear...
    • 21. Hernández, E., Henriquez, H.R., McKibben, M.A.: Existence results for abstract impulsive second order neutral functional differential...
    • 22. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)
    • 23. Kisy ´nski, J.: On cosine operator functions and one parameter group of operators. Stud. Math. 49, 93–105 (1972)
    • 24. Kozak, M.: An abstract second order temporally inhomogeneous linear differential equation II. Univ. lagel. Acta Math. 32, 263–274 (1995)
    • 25. Kumar, A., Muslim, M., Sakthivel, R.: Controllability of the second order nonlinear differential equations with non-instantaneous impulses....
    • 26. Kumar, A., Vats, R.K., Kumar, A.: Approximate controllability of second order nonautonomous system with finite delay. J. Dyn. Control...
    • 27. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
    • 28. Li, X.J., Yong, J.M.: Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications....
    • 29. Lin, Y.: Time-dependent perturbation theory for abstract evolution equations of second order. Stud. Math. 130, 263–274 (1998)
    • 30. Liang, J., Liu, J.H., Xiao, T.J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model....
    • 31. Liu, S., Wang, J., O’Regan, D.: Trajectory approximately controllability and optimal control for noninstantaneous impulsive inclusions...
    • 32. Lunardi, A.: On the linear heat equation with fading memory. SIAM J. Math. Anal. 21, 1213–1224 (1990)
    • 33. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J....
    • 34. Mahmudov, N.I., Vijayakumar, V., Murugesu, R.: Approximate controllability of second order evolution differential inclusions in Hilbert...
    • 35. Malik, M., Kumar, A., Feckan, M.: Existence, uniqueness, and stability of solutions to second order nonlinear differential equations with...
    • 36. Ntouyas, S.K.: Nonlocal initial and boundary value problems: a survey. In: Handbook of Differential Equations: Ordinary Differential Equations,...
    • 37. Nunziato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29, 187–204 (1971)
    • 38. Obrecht, E.: Evolution operators for higher order abstract parabolic equations. Czechoslov. Math. J. 36, 210–222 (1986)
    • 39. Obrecht, E.: The Cauchy problem for time-dependent abstract parabolic equations of higher order. J. Math. Anal. Appl. 125, 508–530 (1987)
    • 40. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span,...
    • 41. Pierri, M., Henríquez, H.R., Prokopczyk, A.: Global solutions for abstract differential equations with non-instantaneous impulses. Mediterr....
    • 42. Ravikumar, K., Mohan, M.T., Anguraj, A.: Approximate controllability of a nonautonomous evolution equation in Banach spaces. Numer. Algebra...
    • 43. Sakthivel, R., Anandhi, E.R., Mahmudov, N.I.: Approximate controllability of second order systems with state-dependent delay. Numer. Funct....
    • 44. Serizawa, H., Watanabe, M.: Time-dependent perturbation for cosine families in Banach spaces. Houst. J. Math. 2, 579–586 (1986)
    • 45. Singh, S., Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of second order impulsive systems with state-dependent delay...
    • 46. Shu, L., Shu, X.B., Mao, J.: Approximate controllability and existence of mild solutions for Riemann– Liouville fractional stochastic...
    • 47. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Hungar. 32, 75–96 (1978)
    • 48. Travis, C.C., Webb, G.F.: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houst. J....
    • 49. Travis, C.C., Webb, G.F.: Second order differential equations in Banach space. In: Nonlinear Equations in Abstract Spaces, pp. 331–361....
    • 50. Triggiani, R.: Addendum: a note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control. Optim. 18,...
    • 51. Triggiani, R.: A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control Optim. 15, 407–411 (1977)
    • 52. Vijaykumar, V., Udhayakumar, R., Dineshkumar, C.: Approximate controllability of second order nonlocal neutral differential evolution...
    • 53. Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equations of mixed type and optimal controls. Optimization 55,...
    • 54. Yan, Z.: Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay....
    • 55. Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Handbook of Differential...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno