Ir al contenido

Documat


Nonlinear Sliding and Nonlinear Regularization of Piecewise Smooth System

  • Autores: Xiaoyan Chen, Dingheng Pi
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned with nonlinear sliding mode and nonlinear regularization of piecewise smooth system. First, we give conditions to ensure that piecewise smooth system has a sliding periodic orbit with the sliding motion defined by Jeffrey’s nonlinear method. Then, nonlinear regularization of piecewise smooth system with a sliding periodic orbit will be discussed. We shall discuss two cases of this problem, i.e. planar case and higher dimension case. For each case, we establish sufficient conditions to ensure that the existence of periodic orbit for the regularized system. Moreover, we prove that the periodic orbit of regularized system will remain close to the sliding periodic orbit of the original piecewise smooth system as the small regularization parameter goes to 0.

  • Referencias bibliográficas
    • 1. Awrejcewicz, J., Feckan, M., Olejnik, P.: On continuous approximation of discontnuous systems. Nonlinear Anal. 62, 1317–1331 (2005)
    • 2. Bossolini, E., Brons, M., Kristiansen, K.: Canards in stiction: on solutions of a friction oscillator by regularization. SIAM J. Appl....
    • 3. Buzzi, C.A., De Carcalho, T., Da Silva, P.R.: Closed poly-trajectories and poincaré index of non-smooth vector fields on the plane. J....
    • 4. Buzzi, C.A., De Carcalho, T., Euzébio, R.D.: On Poincaré–Bendixson theorem and nontrivial minimal sets in planar nonsmooth vector fields....
    • 5. Dieci, L., Elia, C., Pi, D.: Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity. Discrete...
    • 6. Di Bernado, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, Theory and Applications. Springer, London...
    • 7. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publishers, Dordrecht (1988)
    • 8. Fu, S., Ma, Z.: Sliding region and coexisting attractors of a friction-induced self-excited vibration. Chaos 30, 023128 (2020)
    • 9. Gannakopoulos, F., Pliete, K.: Planar systems of piecewise linear differential equations with a line of discontinuity. Nonlinearity 14,...
    • 10. Guardia, M., Seara, T., Teixeira, M.A.: Generic bifurcations of low codimension of planar Filippov systems. J. Differ. Equ. 250, 1967–2023...
    • 11. Guglielmi, N., Hairer, E.: Classification of hidden dynamics in discontinuous dynamical systems. SIAM J. Appl. Dyn. Syst. 14, 1454–1477...
    • 12. Ilyashenko, Y.: Centennial history of Hilbert’s 16th proble. Bull. Am. Math. Soc. 39, 301–354 (2002)
    • 13. Jeffrey, M.R.: Dynamics at a switching intersection: hierarchy, isonomy, and multiple-sliding. SIAM J. Appl. Dyn. Syst. 13, 1082–1105...
    • 14. Jeffrey, M.R.: Hidden dynamics in models of discontinuity and switching. Physica D 34(45), 273–274 (2014)
    • 15. Jeffrey, M.R.: Exit from sliding in piecewise-smooth flows: deterministic versus determinacy-breaking. Chaos. 26, 033108(1–20) (2016)
    • 16. Jeffrey, M.R.: Hidden degeneracies in piecewise smooth dynamical systems. Int. J. Bifur. Chaos 26, 1650087 (2016)
    • 17. Jeffrey, M.R.: The ghosts of departed quantities in switches and transitions. SIAM Rev. 60, 116–136 (2018)
    • 18. Jeffrey, M.R.: Hidden Dynamics, The Mathematics of Switches, Decisions and Other Discontinuous Behaviour. Springer, Cham (2018)
    • 19. Kristiansen, K.U.: The regularized visible fold revisited. J. Nonlinear Sci. 30, 2463–2511 (2020)
    • 20. Kristiansen, K.U., Hogan, S.J.: Regularization of two-fold bifurations in planar piecewise smooth systems. SIAM J. Appl. Dyn. Syst. 14,...
    • 21. Krupa, M., Szmolyan, P.: Extending geometric singular perturbattion theory to nonhyperbolic pointsfold and canard points in two dimensions....
    • 22. Makarenkov, O.: A new text for stick-slip limit cycles in dry-friction oscillators with a small nonlinearity in the friction characteristic....
    • 23. Novaes, D.D., Jeffrey, M.R.: Regularization of hidden dynamics in piecewise smooth flows. J. Differ. Equ. 259, 4615–4633 (2015)
    • 24. Reves, C.B., Seara, T.M.: Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete...
    • 25. Sotomayor, J., Teixeira, M.A.: Regularization of discontinuous vector fields. In: International Conference on Differential Equation, Lisboa,...
    • 26. Sotomayor, J., Machado, A.F.: Structurally stable discontinuous vector fields in the plane. Qual. Theory Dyn. Syst. 3, 227–250 (2002)
    • 27. Tang, S., Liang, J., Xiao, Y., Cheke, R.A.: Sliding bifurcations of Filippov two stage pest control models with economic thresholds. SIAM...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno