Ir al contenido

Documat


Exactly Solvable Quadratic Differential Equation Systems Through Generalized Inversion

  • Ádám Bácsi [2] ; Albert Tihamér Kocsis [1]
    1. [1] Széchenyi István University

      Széchenyi István University

      Hungría

    2. [2] Széchenyi István University & Budapest University of Technology and Economics
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the autonomous systems of quadratic differential equations of the form x˙i(t)=x(t)TAix(t)+vTix(t) with x(t)=(x1(t), x2(t),…,xi(t),…) which, in general, cannot be solved exactly. In the present paper, we introduce a subclass of analytically solvable quadratic systems, whose solution is realized through a multi-dimensional generalization of the inversion which transforms a quadratic system into a linear one. We provide a constructive algorithm which, on one hand, decides whether the system of differential equations is analytically solvable with the inversion transformation and, on the other hand, provides the solution. The presented results apply for arbitrary, finite number of variables.

  • Referencias bibliográficas
    • 1. Giacomini, H., Giné, J., Grau, M.: Integrability of planar polynomial differential systems through linear differential equations. Roc....
    • 2. Giacomini, H., Giné, J., Grau, M.: Linearizable planar differential systems via the inverse integrating factor. J. Phys. A Math. Theor....
    • 3. Mardesic, P., Rousseau, C., Toni, B.: Linearization of isochronous centers. J. Differ. Equ. 121(1), 67–108 (1995). https://doi.org/10.1006/jdeq.1995.1122
    • 4. Giné, J., Grau, M.: Characterization of isochronous foci for planar analytic differential systems. Proc. R. Soc. Edinb. Sect. A Math. 135(5),...
    • 5. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (1996)
    • 6. Ghomanjani, F., Shateyi, S.: Solving a quadratic riccati differential equation, multi-pantograph delay differential equations, and optimal...
    • 7. Polyanin, A.D., Zaitsev, V.F.: Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Chapman and Hall/CRC,...
    • 8. Champagnat, N., Jabin, P.-E., Raoul, G.: Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems. C. R. Math. 348(23–24),...
    • 9. Vakulenko, S., Grigoriev, D., Weber, A.: Reduction methods and chaos for quadratic systems of differential equations. Stud. Appl. Math....
    • 10. Coppel, W.: A new class of quadratic systems. J. Differ. Equ. 92, 360–372 (1991). https://doi.org/10. 1016/0022-0396(91)90054-D
    • 11. Elliott, D.: Bilinear Control Systems: Matrices in Action. Applied Mathematical Sciences, 1st edn. Springer, Berlin (2009)
    • 12. Bácsi, A., Moca, C.P., Dóra, B.: Dissipation-induced Luttinger liquid correlations in a one-dimensional Fermi gas. Phys. Rev. Lett. 124,...
    • 13. Date, T.: Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems. J. Differ. Equ. 32(3),...
    • 14. Schlomiuk, D., Vulpe, N.: Geometry of quadratic differential systems in the neighborhood of infinity. J. Differ. Equ. 215(2), 357–400...
    • 15. Chavarriga, J., García, B., Llibre, J., [del Río], J.S.P., Rodríguez, J.A.: Polynomial first integrals of quadratic vector fields. J....
    • 16. Reyn, J.: Phase Portraits of Planar Quadratic Systems. Springer, Berlin (2007)
    • 17. Llibre, J., Pereira, W.F., Pessoa, C.: Phase portraits of Bernoulli quadratic polynomial differential systems. Electron. J. Differ. Equ....
    • 18. Llibre, J., Valls, C.: Phase portraits of the complex Abel polynomial differential systems. Chaos Solitons Fract. 148, 111050 (2021)....
    • 19. Ramírez, J.L., Rubiano, G.N.: A geometrical construction of inverse points with respect to an ellipse. Int. J. Math. Educ. Sci. Technol....
    • 20. Ramírez, J.L., Rubiano, G.N.: A generalization of the spherical inversion. Int. J. Math. Educ. Sci. Technol. 48(1), 132–149 (2017). https://doi.org/10.1080/0020739X.2016.1201598
    • 21. Feng, J.E., Lam, J., Wei, Y.: Spectral properties of sums of certain Kronecker products. Linear Algebra Appl. 431(9), 1691–1701 (2009)....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno