Ir al contenido

Documat


On maximum degree (signless) Laplacian matrix of a graph

  • Rangarajan, R. ; Raghu, V. D. [1] ; Rakshith , B. R.
    1. [1] University of Mysore.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 6, 2022, págs. 1333-1352
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5434
  • Enlaces
  • Resumen
    • Let G be a simple graph on n vertices and v1, v2, . . . , vn be the vertices ofG. We denote the degree of a vertex vi in G by dG(vi) = di. The maximumdegree matrix of G, denoted by M(G), is the real symmetric matrix withits ijth entry equal to max{di, dj} if the vertices vi and vj are adjacent inG, 0 otherwise. In analogous to the definitions of Laplacian matrix andsignless Laplacian matrix of a graph, we consider Laplacian and signlessLaplacian for the maximum degree matrix, called the maximum degreeLaplacian matrix and the maximum degree signless Laplacian matrix,respectively. Also, we introduce maximum degree Laplacian energy andmaximum degree signless Laplacian energy of a graph. Then we determinethe maximum degree (signless) Laplacian energy of some graphs in termsof ordinary energy, and (signless) Laplacian energy. We compute themaximum degree (signless) Laplacian spectra of some graph compositions.A lower and upper bound for the largest eigenvalue of the (signless) Laplacianmatrix is established and also we determine an upper bound for the secondsmallest eigenvalue of maximum degree Laplacian matrix in terms of vertexconnectivity. We also determine bounds for the maximum degree (signless)Laplacian energy in terms of first Zagreb index.

  • Referencias bibliográficas
    • N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, and M. Robbiano, “Bounds for the signless Laplacian Energy”, Linear Algebra and its Applications,...
    • C. Adiga and B. R. Rakshith, “Upper Bounds for the extended energy of graphs and some extended equienergetic graphs”, Opuscula Mathematica,...
    • C. Adiga and M. Smitha, “On maximum degree energy of a graph”, International Journal of Contemporary Mathematical Sciences, vol. 4, pp. 385-396,...
    • D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application. New York: Academic Press, 1980.
    • D. Cvetković and S. Simić, “Towards a spectral theory of graphs based on the signless Laplacian, III”, Applicable Analysis and Discrete Mathematics,...
    • K. C. Das, I. Gutman, I. Milovanović, E. Milovanović, and B. Furtula, “Degree-based energies of graphs”, Linear Algebra and its Applications,...
    • K. Das and S. A. Mojalal, “On energy and Laplacian energy of graphs”, The Electronic Journal of Linear Algebra, vol. 31, pp. 167–186, 2016....
    • K. C. Das and S. A. Mojallal, “Relation between signless Laplacian Energy, energy of graph and its line graph”, Linear Algebra and its Applications,...
    • R. Frucht and F. Harary, “On the corona of two graphs”, Aequationes Mathematicae, vol. 4, no. 3, pp. 322–325, 1970. https://doi.org/10.1007/bf01844162
    • I. Gutman, “The energy of a graph”, Ber. Math.-Statist. Sekt. Forschungsz. Graz, vol. 103, pp. 1-22, 1978.
    • I. Gutman and B. Furtula, “Survey of graph energies”, Mathematics Interdisciplinary Research, vol. 2, pp. 85-129, 2017. [On line]. Available:...
    • I. Gutman, E. Milovanović, and I. Milovanović, “Beyond the Zagreb indices”, AKCE International Journal of Graphs and Combinatorics, vol. 17,...
    • I. Gutman and H. S. Ramane, “Research on graph energies in 2019”, MATCH Communications in Mathematical and in Computer Chemistry, vol. 84,...
    • I. Gutman and B. Zhou, “Laplacian energy of a graph”, Linear Algebra and its Applications, vol. 414, no. 1, pp. 29–37, 2006. https://doi.org/10.1016/j.laa.2005.09.008
    • H. Hatefi, H. A. Ahangar, R. Khoeilar, and S. M. Sheikholeslami, “On the inverse sum indeg energy of trees”, Asian-European Journal of Mathematics,...
    • R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University Press, 2012.
    • G. Indulal, A. Vijayakumar, “On a pair of equienergetic graphs”, MATCH Communications in Mathematical and in Computer Chemistry, vol. 55,...
    • A. Jahanbani, R. Khoeilar, and H. Shooshtari, “On the Zagreb matrix and Zagreb Energy,” Asian-European Journal of Mathematics, vol. 15, no....
    • X. Li, Y. Shi and I. Gutman, Graph Energy. New York: Springer, 2012.
    • A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications. New York: Academic Press, 1979.
    • R. Merris, “Laplacian matrices of graphs: A survey”, Linear Algebra and its Applications, vol. 197-198, pp. 143–176, 1994. https://doi.org/10.1016/0024-3795(94)90486-3
    • E. Sampathkumar, “On duplicate graphs”, Journal of the Indian Mathematical Society, vol. 37, pp. 285-293, 1973. [On line]. Available: https://bit.ly/3haZv7m

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno