Ir al contenido

Documat


Ulam type stability of second-order linear differential equations with constant coefficients having damping term by using the Aboodh transform

  • Mısır, Adil [1] ; Öğrekçi, Süleyman [2] ; Başcı, Yasemin [3]
    1. [1] Gazi University.
    2. [2] Amasya University.
    3. [3] Bolu Abant Izzet Baysal University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 6, 2022, págs. 1475-1504
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5260
  • Enlaces
  • Resumen
    • The main aim of this paper is to investigate various types of Ulam stability and Mittag-Leffler stability of linear differential equations of second order with constant coefficients having damping term using the Aboodh transform method. We also obtain the Hyers-Ulam stability constants of these differential equations using the Aboodh transform and some examples to illustrate our main results are given.

  • Referencias bibliográficas
    • S. M. Ulam, Problem in Modern Mathematics. New York: Willey, 1960.
    • D. H. Hyers, ”On the Stability of a Linear functional equation”, Proceedings of the National Academy of Sciences, vol. 27, pp. 222-224, 1941....
    • T. Aoki, ”On the stability of the linear transformation in Banach spaces”, Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66,...
    • D. G. Bourgin, ”Classes of transformations and bordering transformations”, Bulletin of the American Mathematical Society, vol. 57, pp. 223-237,...
    • J. M. Rassias, ”On approximately of approximately linear mappings by linear mappings”, Journal of Functional Analysis, vol. 46, pp. 126-130,...
    • T. M. Rassias, ”On the stability of the linear mappings in Banach Spaces”, Proceedings of the American Mathematical Society, vol. 72, pp....
    • H. Vaezi, ”Hyers-Ulam stability of weighted composition operators on disc algebra”, International Journal of Mathematics and Computation,...
    • T. Miura, ”On the Hyers-Ulam stability of a differentiable map”, Scientiae Mathematicae Japonicae, vol. 55, pp. 17-24, 2002.
    • I. A. Rus, ”Ulam Stabilities of ordinary differential equations in a Banach space”, Carpathian Journal of Mathematics, vol. 26, pp. 103-107,...
    • Q. H. Alqifiary and S. Jung, ”Laplace transform and generalized Hyers-Ulam stability of differential equations”, Electronic Journal of Differential...
    • A. Buakird and S. Saejung, ”Ulam stability with respect to a directed graph for some fixed point equations”, Carpathian Journal of Mathematics,...
    • R. Fukutaka and M. Onitsuka, ”Best constant in Hyers-Ulam stability of first-order homogeneous linear differential equations with a periodic...
    • J. Huang, S. Jung and Y. Li, ”On Hyers-Ulam stability of nonlinear differential equations”, Bulletin of the Korean Mathematical Society, vol....
    • T. Li, A. Zada and S. Faisal, ”Hyers-Ulam stability of nth order linear differential equations”, Journal of Nonlinear Science and Applications,...
    • Y. Li and Y. Shen, ”Hyers-Ulam stability of linear differential equations of second order”, Applied Mathematics Letters, vol. 23, pp. 306-309,...
    • R. Murali, A. Bodaghi and A. P. Selvan, ”Stability for the third order linear ordinary differential equation”, International Journal of Computer...
    • R. Murali and A. P. Selvan, ”On the generalized Hyers-Ulam stability of linear ordinary differential equations of higher order”, International...
    • R. Murali and A. P. Selvan, ”Hyers-Ulam-Rassias stability for the linear ordinary differential equation of third order”, Kragujevac Journal...
    • R. Murali and A. P. Selvan, ”Ulam stability of third order linear differential equations”, International Journal of Pure and Applied Mathematics...
    • R. Murali and A. P. Selvan, ”Hyers-Ulam stability of nth order linear differential equation”, Proyecciones (Antofagasta), vol. 38, no. 3,...
    • R. Murali and A. P. Selvan, ”Hyers-Ulam stability of a free and forced vibrations”, Kragujevac Journal of Mathematics, vol. 44, no. 2, pp....
    • M. Onitsuka, ”Hyers-Ulam stability of first order linear differential equations of Caratheodory type and its application”, Applied Mathematics...
    • M. Onitsuka and T. Shoji, ”Hyers-Ulam stability of first order homogeneous linear differential equations with a real valued coefficients”,...
    • R. Murali, A. P. Selvan and C. Park, ”Ulam stability of linear differential equations using Fourier transform”, AIMS Mathematics, vol. 5,...
    • R. Murali and A. P. Selvan, ”Fourier transforms and Ulam stabilities of linear differential equations”, in Frontiers in Functional Equations...
    • J. M. Rassias, R. Murali and A. P. Selvan, ”Mittag-Leffler-Hyers-Ulam stability of linear differential equations using Fourier transforms”,...
    • A. A. Alshikh and M. M. Abdelrahim Mahgob, ”A comparative study between Laplace transform and two new integrals ELzaki” transform and Aboodh...
    • K. S. Aboodh, ”Solving porous medium equation using Aboodh transform homotopy perturbation method”, American Journal of Applied Mathematics,...
    • S. Aggarwal, N. Sharma and R. Chauhan, ”Solution of linear Volterra integro-differential equations of second kind using Mahgoub transform”,...
    • B. O. Osu and V. U. Sampson, ”Application of Aboodh transform to the solution of stochastic differential equation”, Journal of Advanced Research...
    • C. Alsina and R. Ger, ”On some inequalities and stability results related to the exponential function”, Journal of Inequalities and Applications,...
    • D. S. Cimpean and D. Popa, ”On the stability of the linear differential equation of higher order with constant coefficients”, Applied Mathematics...
    • B. Davies, Integral Transforms and Their Applications. New York: Springer, 2001.
    • S. M. Jung, ”Hyers-Ulam stability of linear differential equations of first order”, Applied Mathematics Letters, vol. 17, pp. 1135-1140, 2004....
    • S. M. Jung, ”Hyers-Ulam stability of linear differential equations of first order, III”, Journal of Mathematical Analysis and Applications,...
    • S. M. Jung, ”Hyers-Ulam stability of linear differential equations of first order, II”, Applied Mathematics Letters, vol. 19, pp. 854-858,...
    • Y. Li and Y. Shen, ”Hyers-Ulam stability of linear differential equations of second order”, Applied Mathematics Letters, vol. 23, pp. 306-309,...
    • T. Miura, S. Miyajima and S. E. Takahasi, ”A characterization of Hyers-Ulam stability of first order linear differential operators”, Journal...
    • T. Miura, S. Miyajima and S. E. Takahasi, ”Hyers-Ulam stability of linear differential operator with constant coefficients”, Mathematische...
    • M. Obloza, “Hyers stability of the linear differential equation”, Rocznik Naukowo-Dydaktyczny. Prace Matematyczne, vol. 13, pp. 259–270, 1993.
    • M. Obloza, ”Connections between Hyers and Lyapunov stability of the ordinary differential equations”, Rocznik Naukowo-Dydaktyczny. Prace Matematyczne,...
    • D. Popa and I. Raşa, ”On the Hyers-Ulam stability of the linear differential equation”, Journal of Mathematical Analysis and Applications,...
    • D. Popa and I. Raşa, ”Hyers-Ulam stability of the linear differential operator with non-constant coefficients”, Applied Mathematics and Computation,...
    • I. A. Rus, ”Remarks on Ulam stability of the operatorial equations”, Fixed Point Theory, vol. 10, pp. 305-320, 2009. [On line]. Available:...
    • I. A. Rus, ”Ulam stability of ordinary differential equations”, Studia Universitatis Babeș-Bolyai Mathematica, vol. 54, pp. 125-134, 2009....
    • S. E. Takahasi, T. Miura and S. Miyajima, ”On the Hyers-Ulam stability of the Banach space-valued differential equation y0’= λy”, Bulletin...
    • S. E. Takahasi, H. Takagi, T. Miura and S. Miyajima, ”The Hyers-Ulam stability constants of first order linear differential operators”, Journal...
    • G. Wang, M. Zhou and L. Sun, ”Hyers-Ulam stability of linear differential equations of first order”, Applied Mathematics Letters, vol. 21,...
    • H. Rezaei, S. M. Jung and T. M. Rassias, ”Laplace transform and Hyers-Ulam stability of linear differential equations”, Journal of Mathematical...
    • J. Xue, ”Hyres-Ulam stability of linear differential equations of second order with constant coefficients”, Italian Journal of Pure and Applied...
    • A. Najatia, M. R. Abdollahpoura and C. Park, ”On the stability of linear differential equations of second order”, International Journal of...
    • A. R. Aruldass, D. Pachaiyappan and C. Park, ”Hyers-Ulam stability of second-order differential equations using Mahgoub transform”, Advances...
    • V. Kalvandi, N. Eghbali and J. M. Rassias, ”Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equations of Second Order”, Journal...
    • A. Mohanapriya1, C. Park, A. Ganesh and V. Govindan, ”Mittag-Leffler-Hyers-Ulam stability of differential equation using Fourier transform”,...
    • R. Murali, A. P. Selvan, C. Park and J. R. Lee, ”Aboodh transform and the stability of second order linear differential equations”, Advanced...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno