Ir al contenido

Documat


Semi-commutativity of graded rings and graded modules

  • Bataineh, Malik [1] ; Refai, Mashhoor [2] ; Abu-Dawwas, Rashid ; Al-Zoubi, Khaldoun
    1. [1] Jordan University of Science and Technology.
    2. [2] Princess Sumaya University for Technology.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 6, 2022, págs. 1377-1395
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4951
  • Enlaces
  • Resumen
    • A ring R is said to be semi-commutative if whenever a, b ∈ R such that ab = 0, then aRb = 0. In this article, we introduce the concepts of g−semi-commutative rings and g−N−semi-commutative rings and we introduce several results concerning these two concepts. Let R be a G-graded ring and g ∈ supp(R, G). Then R is said to be a g−semi-commutative if whenever a, b ∈ R with ab = 0, then aRgb = 0. Also, R is said to be a g − N−semi-commutative if for any a ∈ R and b ∈ N(R) ⋂ Ann(a), bRg ⊆ Ann(a). We introduce an example of a G-graded ring R which is g − N-semi-commutative for some g ∈ supp(R, G) but R itself is not semi-commutative. Clearly, if R is a g−semi-commutative ring, then R is a g − N−semi-commutative ring, however, we introduce an example showing that the converse is not true in general. Several results and examples are investigated. Also, we introduce the concept of g − NE−semi-commutative rings and we introduce several results concerning g−NE−semi-commutative rings.

      Let R be a G-graded ring and g ∈ supp(R, G). Then R is said to be a g−NE− semi-commutative ring if whenever a ∈ N(R) and b ∈ E(R) such that ab = 0, then aRgb = 0. Clearly, g−semi-commutative rings are g −NE−semi-commutative, however, we introduce an example ...

  • Referencias bibliográficas
    • R. Abu-Dawwas, K. Al-Zoubi, and M. Bataineh, “Prime submodules of graded modules,” Proyecciones (Antofagasta), vol. 31, no. 4, pp. 355–361,...
    • K. Al-Zoubi and R. Abu-Dawwas, “On graded 2-absorbing and weakly graded 2-absorbing submodules”, Journal of Mathematical Sciences: Advances...
    • M. Baser and N. Agayev, “On reduced and semi-commutative modules”, Turkish Journal of Mathematics, vol. 30, pp. 285-291, 2006. [On line]....
    • M. Başer and A. Harmanci, “Reduced and p.q.-baer modules”, Taiwanese Journal of Mathematics, vol. 11, no. 1, 2007. https://doi.org/10.11650/twjm/1500404651
    • A.M. Buhphang and M.B. Rege, “Semi-commutative modules and Armendariz modules”, Arab Journal of Mathematical Society, vol. 8, pp. 53-65, 2002....
    • A.M. Buhphang, S. Halicioglu, A. Harmanci, K. Hera Singh, H.Y. Kose and M.B. Rege, “On rigid modules”, East-West Journal of Mathematics, vol....
    • H. Y. Chen, “A note on potent elements”, Kyungpook Mathematical Journal, vol. 45, pp. 519-526, 2005. [On line]. Available: https://bit.ly/3sY9y2l
    • P. M. Cohn, “Reversible Rings”, Bulletin of London Mathematical Society, vol. 31, no. 6, pp. 641-648, 1999. https://doi.org/10.1112/s0024609399006116
    • M. Cohen and L. Rowen, “Group graded rings”, Communications in Algebra, vol. 11, pp. 1253-1270, 1983.
    • M. P. Drazin, “Rings with central idempotent or nilpotent elements”, Proceedings of the Edinburgh Mathematical Society, vol. 9, no. 4, pp....
    • K. R. Goodearl, Von Neumann regular rings. London: Pitman, 1979.
    • T. K. Lee and Y. Zhou, “Reduced modules”, in Rings, modules, algebras and abelian groups, A. Facchini, E. Houston, and L. Salce, Eds. New...
    • R. Mohammadi, A. Moussavi and M. Zahiri, “On nil-semicommutative rings”, International Electronic Journal of Algebra, vol. 11, pp. 20-37,...
    • C. Nastasescu and F. Van Oystaeyen, Methods of graded rings. Berlin: Springer, 2004.
    • M. Refai and K. Al-Zoubi, “On graded primary ideals”, Turkish journal of mathematics, vol. 28, no. 3, pp. 217-229, 2004. [On line]. Available:...
    • M. Refai, “Graded radicals and graded prime spectra”, Far East journal of mathematical sciences, pp. 59-73, 2000.
    • M. B. Rege, “On von Neuman regular rings and SF-rings”, Mathematica Japonica, vol. 31, no. 6, pp. 927-936, 1986.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno