Ir al contenido

Documat


Fixed point theorems for a class of extended JS contraction mappings over a generalized metric space with an application to fixed circle problema

  • Roy, Kushal [1] ; Saha, Mantu [2]
    1. [1] Maulana Abul Kalam Azad University of Technology.
    2. [2] The University of Burdwan.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 6, 2022, págs. 1551-1572
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4363
  • Enlaces
  • Resumen
    • In this paper we prove some generalized fixed point theorems for a class of contractive mappings over an extended JS-generalized metric space. Notions of weakly sensitive and strongly sensitive coefficient functions have been used here in proving fixed point theorems. Examples are given in strengthening the hypothesis of our established theorems. Moreover an application is given to fixed circle problem.

  • Referencias bibliográficas
    • J.A Bakhtin, “The contraction mapping principle in quasi-metric spaces”, Functional Analysis, vol. 30, 1989.
    • S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations untegrales”, Fundamenta Mathematicae, vol. 3,...
    • L.B Ćirić, “A generalization of Banach’s contraction principle”, Proceedings of the American Mathematical Society, vol. 45, no. 2, pp. 267-273,...
    • L.B Ćirić, “Generalized contractions and fixed-point theorems”, Publications De L’Institut Mathéematique, vol. 12, no. 26, pp. 19-26, 1971....
    • S. Czerwik, “Contraction mappings in b-metric spaces”, Acta Mathematica et Informatica Universitatis Ostraviensis, vol. 1, no. 1, pp. 5-11,...
    • N. Hussain, V. Parvaneh, B. Samet and C. Vetro, “Some fixed point theorems for generalized contractive mappings in complete metric spaces”,...
    • S. Jiang, Z. Li and B. Damjanović, “Some fixed point theorems for generalized contractive mappings in complete metric spaces’”, Fixed Point...
    • M. Jleli and B. Samet, “A generalized metric space and related fixed point theorems”, Fixed Point Theory and Applications, 2015. https://doi.org/10.1186/s13663-015-0312-7
    • M. Jleli and B. Samet, “A new generalization of the Banach contraction principle”, Journal of Inequalities and Applications, Art. ID 38, 2014....
    • M. Jleli and B. Samet, “Further generalizations of the Banach contraction principle”, Journal of Inequalities and Applications, 2014. https://doi.org/10.1186/1029-242X-2014-439.v
    • T. Kamran, M. Samreen and Q.U. Ain, “A generalization of b-metric space and some fixed point theorems”, Mathematics, vol. 5, no. 19, 2017....
    • Z. Li, and S. Jiang, “Fixed point theorems of JS-quasi-contractions”, Fixed Point Theory and Applications, 2016. https://doi.org/10.1186/s13663-016-0526-3
    • Z. Mustafa, M.M.M. Jaradat, and H.M Jaradat, “A remarks on the paper Some fixed point theorems for generalized contractive mappings in complete...
    • N.Y. Özgür and N. Taș, “Some fixed-circle theorems on metric spaces”, 2017. arXiv: 1703.00771v2
    • B.E. Rhoades, “A Comparison of Various Definitions of Contractive Mappings”, transactions of The American Mathematical Society, vol. 226,...
    • K. Roy and M. Saha, “An abstract metric space and some fixed point theorems with an application to Markov process”, The Journal of Analysis,...
    • T. Senapati and L.K. Dey, “A new approach on coupled fixed point theory in JS-metric spaces”, Fixed Point Theory, vol. 20, no. 1, pp. 323-336,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno