Ir al contenido

Documat


Bifurcation of Limit Cycles and Pseudo-Isochronicity at Infinity in a Septic Polynomial Vector Field

  • Autores: Yusen Wu, Luju Liu
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 11, Nº 2, 2012, págs. 417-433
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the appearance of limit cycles from the equator and pseudo-isochronicity at infinity in a class of septic polynomial vector field with no singular point at infinity. We solve the problems by an indirect method, i.e., we transform infinity into the origin so that we can investigate the properties of infinity with the methods developed for finite critical point. Further, we construct a septic system which has six limit cycles in the neighborhood of infinity. Finally, we investigate the pseudo-isochronous center conditions at infinity for the system. As far as we know, this is the first time that the bifurcation of limit cycles and pseudo-isochronous center conditions at infinity in a septic system are simultaneously discussed.

  • Referencias bibliográficas
    • 1. Amelbkin, B.B., Lukasevnky, H.A., Catovcki, A.N.: Nonlinear Vibration, pp. 19–21. VGU Lenin Publ., Moscow (in Russian) (1982)
    • 2. Blows, T.R., Rousseau, C.: Bifurcation at infinity in polynomial vector fields. J. Differ. Equ. 104, 215– 242 (1993)
    • 3. Cairó, L., Chavarriga, J., Giné, J., Llibre, J.: A class of reversible cubic systems with an isochronous center. Comput. Math. Appl. 38,...
    • 4. Chavarriga, J., Giné, J., García, I.: Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial. Bull. Sci....
    • 5. Chavarriga, J., Giné, J., García, I.: Isochronous centers of cubic systems with degenerate infinity. Differ. Equ. Dynam. Syst. 7(2), 221–238...
    • 6. Chavarriga, J., Giné, J., García, I.: Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomial. J. Comput....
    • 7. Chavarriga, J., Giné, J., García, I.: Isochronicity into a family of time-reversible cubic vector fields. Appl. Math. Comput. 121, 129–145...
    • 8. Chen, H., Liu, Y.: Limit cycle of the equator in a quintic polynomial system. Chin. J. Contemp. Math. 24A, 219–224 (in Chinese) (2003)
    • 9. Huang, W., Liu, Y.: A polynomial differential system with eight limit cycles at infinity. J. Math. (PRC). 24(5), 551–556 (2004)
    • 10. Huang, W., Liu, Y.: A polynomial differential system with nine limit cycles at infinity. Comput. Math. Appl. 48, 577–588 (2004)
    • 11. Huang, W., Liu, Y.: Bifurcations of limit cycles from infinity for a class of quintic polynomial system. Bull. Sci. Math. 128, 291–302...
    • 12. Huang, W., Liu, Y.: Conditions of infinity to be an isochronous center for a class of differential systems. In: Wang, D., Zheng, Z. (eds.)...
    • 13. Huang, W., Liu, Y.: Conditions of infinity to be an isochronous centre for a rational differential system. Math. Comput. Model. 46, 583–594...
    • 14. Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Internat. J. Bifur. Chaos. 13, 47–106 (2003)
    • 15. Li, J., Liu, Y.: New results on the study of Zq -equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9, 167–219 (2010)
    • 16. Lin, Y., Li, J.: Normal form and critical points of the period of closed orbits for planar autonomous systems. Acta Math. Sinica 34, 490–501...
    • 17. Liu, Y.: Theory of center-focus for a class of higher-degree critical points and infinite points. Sci. China (Ser. A) 44, 37–48 (2001)
    • 18. Liu, Y., Chen, H.: Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system. Acta Math. Appl....
    • 19. Liu, Y., Chen, H.: Stability and bifurcations of limit cycles of the equator in a class of cubic polynomial systems. Comput. Math. Appl....
    • 20. Liu, Y., Huang, W.: A new method to determine isochronous center conditions for polynomial differential systems. Bull. Sci. Math. 127,...
    • 21. Liu, Y., Huang, W.: Center and isochronous center at infinity for differential systems. Bull. Sci. Math. 128, 77–89 (2004)
    • 22. Liu, Y., Li, J.: Theory of values of singular point in complex autonomous differential system. Sci. China (Ser. A) 3, 10–24 (1990)
    • 23. Liu, Y., Li, J.: Period constants and Time-Angle difference of isochronous centers for complex analytic systems.Internat. J. Bifur. Chaos....
    • 24. Liu, Y., Li, J.: Center problem and multiple Hopf Bifurcation for the Z5-equivariant planar polynomial vector fields of degree 5. Int....
    • 25. Liu, Y., Zhao, M.: Stability and bifurcation of limit cycles of the equator in a class of fifth polynomial systems. Chin. J. Contemp....
    • 26. Lloyd, N.G., Christopher, J., Devlin, J., Pearson, J.M., Uasmin, N.: Quadratic like cubic systems. Differ. Equ. Dynam. Syst. 5(3–4), 329–345...
    • 27. Loud, W.S.: Behavior of the period of solutions of certain plane autonomous systems near centers. Contribut. Differ. Equ. 3, 21–36 (1964)
    • 28. Pleshkan, I.: A new method of investigating the isochronicity of a system of two differential equations. Differ. Equ. 5, 796–802 (1969)
    • 29. Ye, Y.: Qualitative Theory of Polynomial Differential Systems. Systems. Shanghai Sci. Tech. Publ., Shanghai (1995) (in Chinese)
    • 30. Zhang, Q., Liu, Y.: A cubic polynomial system with seven limit cycles at infinity. Appl. Math. Comput. 177, 319–329 (2006)
    • 31. Zhang, Q., Liu, Y.: A quintic polynomial differential system with eleven limit cycles at the infinity. Comput. Math. Appl. 53, 1518–1526...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno