Ir al contenido

Documat


The Lamination of Infinitely Renormalizable Dissipative Gap Maps: Analyticity, Holonomies and Conjugacies

  • Autores: Márcio R. A. Gouveia, Eduardo Colli
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 11, Nº 2, 2012, págs. 231-275
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Motivated by return maps near saddles for three-dimensional flows and also by return maps in the torus associated to Cherry flows, we study gap maps with derivative positive and smaller than one outside the discontinuity point. We prove that the lamination of infinitely renormalizable maps (or else maps with irrational rotation numbers) has analytic leaves in a natural subset of a Banach space of analytic maps of this kind. With maps having Hölder continuous derivative and derivative bounded away from zero, we also prove Hölder continuity of holonomies of the lamination and also of conjugacies between maps having the same combinatorics.

  • Referencias bibliográficas
    • 1. Aranson, S.Kh., Zhuzhoma, E.V.: Qualitative theory of flows on surfaces (a review). J. Math. Sci. (New York) 90(3), 2051–2110 (1998)
    • 2. Aranson, S.Kh., Zhuzhoma, E.V., Medvedev, T.V.: Classification of Cherry transformations on a circle and of Cherry flows on a torus. Izv....
    • 3. Berry, D., Mestel, B.D.: Wandering intervals for Lorenz maps with bounded nonlinearity. Bull. Lond. Math. Soc. 23(2), 183–189 (1991)
    • 4. Boyd, C.: On the structure of the family of Cherry fields on the torus. Ergodic Theory Dyn. Syst. 5(1), 27–46 (1985)
    • 5. Brette, R.: Rotation numbers of discontinuous orientation-preserving circle maps. Set-Valued Anal. 11(4), 359–371 (2003)
    • 6. Chae, S.B.: Holomorphy and calculus in normed spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 92. With an appendix...
    • 7. Cherry, T.M.: Analytic quasi-periodic curves of discontinuous type on the torus. Proc. Lond. Math. Soc. 44, 175–215 (1938)
    • 8. de Melo, W.: On the cyclicity of recurrent flows on surfaces. Nonlinearity 10(2), 311–319 (1997)
    • 9. dos Anjos, A.G.: Polynomial vector fields on the torus. Bol. Soc. Brasil. Mat. 17(2), 1–22 (1986)
    • 10. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)
    • 11. Gutiérrez, C.: Smoothability of Cherry flows on two-manifolds. In: Geometric Dynamics (Rio de Janeiro, 1981). Lecture Notes in Math.,...
    • 12. Keller, G., St. Pierre, M.: Topological and measurable dynamics of Lorenz maps. In: Ergodic Theory, Analysis, and Efficient Simulation...
    • 13. Krantz, S.G.: Function theory of several complex variables. The Wadsworth & Brooks/Cole Mathematics Series, 2nd edn. Wadsworth &...
    • 14. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)
    • 15. Martens, M., de Melo, W., van Strien, S.: Julia-Fatou-Sullivan theory for real one-dimensional dynamics. Acta Math. 168(3–4), 273–318...
    • 16. Martens, M., van Strien, S.,de Melo, W., Mendes, P.: On Cherry flows. Ergodic Theory Dyn. Syst. 10(3), 531–554 (1990)
    • 17. Moreira, P.C., Ruas, A.A.G.: Metric properties of Cherry flows. J. Differ. Equ. 97(1), 16–26 (1992)
    • 18. Mujica, J.: Complex analysis in Banach spaces. In: North-Holland Mathematics Studies, vol. 120. Holomorphic functions and domains of holomorphy...
    • 19. Nikolaev, I., Zhuzhoma, E.V.: Flows on 2-dimensional manifolds. In: Lecture Notes in Mathematics, vol. 1705. Springer, Berlin (1999)
    • 20. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. An Introduction. Translated from the Portuguese by A. K. Manning. Springer,...
    • 21. St. Pierre, M.: Topological and measurable dynamics of Lorenz maps. Dissertationes Math. (Rozprawy Mat.) 382, 134 (1999)
    • 22. van Strien, S.: One-dimensional dynamics in the new millennium. Discrete Contin. Dyn. Syst. 27(2), 557–588 (2010)
    • 23. van Strien, S., Vargas, E.: Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Am. Math. Soc. 17(4), 749–782 (2004)
    • 24. Williams, R.F.: The structure of Lorenz attractors. In: Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977), pp. 94–112. Lecture...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno