Ir al contenido

Documat


Asymptotic convergence of evolving hypersurfaces

  • Carlo Mantegazza [1] ; Marco Pozzetta [1]
    1. [1] Università di Napoli Federico II
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 38, Nº 6, 2022, págs. 1927-1944
  • Idioma: inglés
  • DOI: 10.4171/RMI/1317
  • Enlaces
  • Resumen
    • If ψ:Mn→Rn+1 is a smooth immersed closed hypersurface, we consider the functional,Fm(ψ)=∫M1+∣∇mν∣2dμ, where ν is a local unit normal vector along ψ, ∇∇ is the Levi-Civita connection of the Riemannian manifold (M,g), with g the pull-back metric induced by the immersion and μ the associated volume measure. We prove that if m>⌊n/2⌋ then the unique globally defined smooth solution to the 2L2-gradient flow of Fm, for every initial hypersurface, smoothly converges asymptotically to a critical point of Fm, up to diffeomorphisms. The proof is based on the application of a Łojasiewicz–Simon gradient inequality for the functional Fm


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno