Ir al contenido

Documat


On a Certain Class of IFSs and Their Attractors

  • Nicolae-Adrian Secelean [1] ; Dariusz Wardowski [2]
    1. [1] Lucian Blaga University of Sibiu

      Lucian Blaga University of Sibiu

      Rumanía

    2. [2] University of Łódź

      University of Łódź

      Łódź, Polonia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Our purpose in this paper is to consider a new class of iterated function systems (IFS) based on the concept of orbital condition introduced by Miculescu et al. (Analele Universit˘a¸tii de Vest Timi¸soara Seria Matematic˘a-Informatic˘a LVI 2:71–80, 2018). On the given IFS there are imposed some sufficient conditions guaranteeing the existence of an attractor. There are also established some further results which describe the nature of the attractors of the considered type. The introduced theory is supported by some examples of IFSs for which the attractors are also depicted.

  • Referencias bibliográficas
    • 1. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1988)
    • 2. Barnsley, M.F., Le´sniak, K.: On the continuity of the Hutchinson operator. Symmetry 7(4), 1831–1840 (2015)
    • 3. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)
    • 4. Miculescu, R., Mihail, A.: Reich-type iterated function systems. J. Fixed Point Theory Appl. 18, 285–296 (2016)
    • 5. Miculescu, R., Mihail, A.: A generalization of Istr˘a¸tescu’s fixed point theorem for convex contractions. Fixed Point Theory 18, 689–702...
    • 6. Miculescu, R., Mihail, A., Savu, I.: Iterated function systems consisting of continuous functions satisfying Banach’s orbital condition....
    • 7. Secelean, N. A.: Countable Iterated Function Systems. Lambert Academic Publishing (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno