Ir al contenido

Documat


On degenerations of Z=2-Godeaux surfaces

  • Eduardo Dias [1] ; Carlos Rito [2] ; Giancarlo Urzúa [3]
    1. [1] Universidade Do Porto

      Universidade Do Porto

      Santo Ildefonso, Portugal

    2. [2] Universidade de Trás-os-Montes e Alto Douro

      Universidade de Trás-os-Montes e Alto Douro

      Vila Real (São Pedro), Portugal

    3. [3] Pontificia Universidad Católica de Chile

      Pontificia Universidad Católica de Chile

      Santiago, Chile

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 38, Nº 5, 2022, págs. 1399-1423
  • Idioma: inglés
  • DOI: 10.4171/RMI/1376
  • Enlaces
  • Resumen
    • We compute equations for the Coughlan’s family of Godeaux surfaces with torsion \mathbb{Z}/2Z/2, which we call \mathbb{Z}/2Z/2-Godeaux surfaces, and we show that it is (at most) 7 dimensional. We classify all non-rational KSBA degenerations WW of \mathbb{Z}/2Z/2-Godeaux surfaces with one Wahl singularity, showing that WW is birational to particular either Enriques surfaces, or D_{2,n}D2,n elliptic surfaces, with n = 3, 4n=3,4 or 66. We present examples for all possibilities in the first case, and for n = 3, 4n=3,4 in the second


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno