Ir al contenido

Documat


On bipartite biregular Moore graphs

  • Gabriela Araujo-Pardo [1] Árbol académico ; Cristina Dalfó [2] Árbol académico ; Miguel Angel Fiol [3] Árbol académico ; Nacho López [2]
    1. [1] Universidad Nacional Autónoma de México

      Universidad Nacional Autónoma de México

      México

    2. [2] Universitat de Lleida

      Universitat de Lleida

      Lérida, España

    3. [3] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

  • Localización: Discrete Mathematics Days 2022 / Luis Felipe Tabera Alonso (ed. lit.) Árbol académico, 2022, ISBN 978-84-19024-02-2, págs. 274-279
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The degree/diameter problem for graphs consists in finding the largest order of a graphwith prescribed degree and diameter, the Moore bound is the upper bound of this order forany pair of fixed values (diameter and degree). If there exists a graph whose order coincideswith this bound we call it a Moore graph.A bipartite graph G = (V, E) with V = V1 ∪ V2 is biregular if all the vertices of a stable setVi have the same degree ri for i = 1, 2. In this work, we study the diameter/degree problemin this context, introduced in 1983 by Yebra, Fiol, and F`abrega.The authors of that paper give a Moore bound for bipartite biregular graphs, called theMoore-like bound. In this work, we proved that for some cases of odd diameter it is impossibleto attain this bound and we give a new bound for these specific cases, we said that weimprove the Moore-like bound. We also propose some constructions of large bipartitebiregular graphs, some of them attaining our new Moore-like bound.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno