Ir al contenido

Documat


A weak form of amenability of topological semigroups and its applications in ergodic and fixed point theories

  • Ebadian, Ali [1] ; Jabbari, Ali [1] ; Eshaghi Gordji, Madjid [2]
    1. [1] Urmia University

      Urmia University

      Irán

    2. [2] Semnan University

      Semnan University

      Irán

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 1, 2023, págs. 149-171
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00340-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we introduce a weak form of amenability on topological semigroups that we call φ-amenability, where φ is a character on a topological semigroup. Some basic properties of this new notion are obtained and by giving some examples, we show that this definition is weaker than the amenability of semigroups. As a noticeable result, for a topological semigroup S, it is shown that if S is φ-amenable, then S is amenable. Moreover, φ-ergodicity for a topological semigroup S is introduced and it is proved that under some conditions on S and a Banach space X, φ-amenability and φ-ergodicity of any antirepresntation defined by a right action S on X, are equivalent. A relation between φ-amenability of topological semigroups and the existence of a common fixed point is investigated and by this relation, Hahn-Banach property of topological semigroups in the sense of φ-amenability defined and studied.

  • Referencias bibliográficas
    • Argabright, L.N.: Invariant means and fixed points; a sequel to Mitchell’s papers. Trans. Am. Math. Soc. 130, 127–130 (1968)
    • Baker, A.C., Baker, J.W.: Duality of topological semigroups with involution. J. London Math. Soc. 44, 251–260 (1969)
    • Bisgaard, T.M.: Extension of characters on *-semigroups. Math. Ann. 282, 251–258 (1988)
    • Eberlein, W.: Abstract ergodic theorems and weak almost periodic functions. Trans. Am. Math. Soc. 67, 217–240 (1949)
    • Dales, H.G.: Banach Algebras and Automatic Continuity. London Mathematical Society, vol. 24. Clarendon Press, Oxford (2000)
    • Dales, H.G., Lau, A.M., Strauss, D.: Banach algebras on semigroups and on their compactifications. Mem. Am. Math. Soc. 5, 130 (2010)
    • Day, M.: Means for the bounded functions and ergodicity of the bounded representations on semigroups. Trans. Am. Math. Soc. 69(2), 276–291...
    • Day, M.: Amenable semigroups. Illinois J. Math. 1, 509–544 (1957)
    • Fan, K.: Invariant subspaces for a semigroup of linear operators. Indug. Math. 27, 447–451 (1965)
    • Grønbæk, N.: Amenability of weighted discrete semigroup convolution algebras. Proc. R. Soc. Edinburgh Sect. A 110, 351–360 (1988)
    • Johnson, B.E.: Cohomology in Banach algebras. Mem. Am. Math. Soc. Providence RI 127, 69 (1972)
    • Kaniuth, E., Lau, A.T., Pym, J.: On \varphi -amenability of Banach algebras. Math. Proc. Camb. Phil. Soc. 144, 85–96 (2008)
    • Klawe, M.: Semidirect product of semigroups in relation to amenability, cancelation properties, and strong Følner conditions. Pacific J. Math....
    • Lau, A.M.: Finite dimensional invariant subspaces for a semigroup of linear operators. J. Math. Anal. Appl. 91, 314–319 (1983)
    • Maysami Sadr, M., Pourabbas, A.: Johnson amenability for topological semigroups. Iran. J. Sci. Tech. Trans. A 32(A2), 151–160 (2010)
    • Mitchell, T.: Topological semigroups and fixed points. Illinois J. Math. 14, 636–641 (1970)
    • Monfared, M.S.: Character amenability of Banach algebras. Math. Proc. Camb. Phil. Soc. 144, 697–706 (2008)
    • Namioka, I.: Følners conditions for amenable semigroups. Math. Scand. 15, 18–28 (1964)
    • Namioka, I.: On certain actions of semi-groups on L-spaces. Studia Math. 29, 63–77 (1967)
    • van Neerven, J.M.A.M.: Hahn-Banach type theorems for adjoint semigroups. Math. Ann. 287, 63–71 (1990)
    • Paterson, A.T.: Amenability. Am. Math. Soc. Math. Surv. Monogr. 29, 100 (1988)
    • Rothman, N.J.: On the uniqueness of character semigroups. Math. Ann. 151, 346–354 (1963)
    • Silverman, J.R.: Means on semigroups and the Hahn-Banach extension property. Trans. Am. Math. Soc. 83, 222–237 (1956)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno