Ir al contenido

Documat


Modular Frobenius pseudo-varieties

  • Robles-Pérez, Aureliano M. [1] ; Rosales, José Carlos [1] Árbol académico
    1. [1] Universidad de Granada

      Universidad de Granada

      Granada, España

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 1, 2023, págs. 133-147
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00339-0
  • Enlaces
  • Resumen
    • If m \in {\mathbb {N}} \setminus \{0,1\} and A is a finite subset of \bigcup _{k \in {\mathbb {N}} \setminus \{0,1\}} \{1,\ldots ,m-1\}^k, then we denote by \begin{aligned} {\mathscr {C}}(m,A) =&\{ S\in {\mathscr {S}}_m \mid s_1+\cdots +s_k-m \in S \text { if } (s_1,\ldots ,s_k)\in S^k \text { and } \\ {}&\qquad (s_1 \bmod m, \ldots , s_k \bmod m)\in A \}. \end{aligned} In this work we prove that {\mathscr {C}}(m,A) is a Frobenius pseudo-variety. We also show algorithms that allows us to establish whether a numerical semigroup belongs to {\mathscr {C}}(m,A) and to compute all the elements of {\mathscr {C}}(m,A) with a fixed genus. Moreover, we introduce and study three families of numerical semigroups, called of second-level, thin and strong, and corresponding to {\mathscr {C}}(m,A) when A=\{1,\ldots ,m-1\}^3, A=\{(1,1),\ldots ,(m-1,m-1)\}, and A=\{1,\ldots ,m-1\}^2 \setminus \{(1,1),\ldots ,(m-1,m-1)\}, respectively.

  • Referencias bibliográficas
    • Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946)
    • Barucci, V., Dobbs, D.E., Fontana, M.: Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible...
    • Bras-Amorós, M., García-Sánchez, P.A.: Patterns on numerical semigroups. Linear Algebra Appl. 414, 652–669 (2006)
    • Bras-Amorós, M., García-Sánchez, P.A., Vico-Oton, A.: Nonhomogeneous patterns on numerical semigroups. Int. J. Algebra Comput. 23, 1469–1483...
    • Campillo, A., Farrán, J.I., Munuera, C.: On the parameters of algebraic-geometry codes related to Arf semigroups. IEEE Trans. Inform. Theory...
    • Delgado, M., García-Sánchez, P.A., Morais, J.: NumericalSgps, a GAP package for numerical semigroups, version 1.2.2 (03/03/2020). https://gap-packages.github.io/numericalsgps/
    • Ramírez Alfonsín, J.L.: The Diophantine Frobenius problem. In: Oxford Lectures Series in Mathematics and its Applications, vol. 30. Oxford...
    • Robles-Pérez, A.M., Rosales, J.C.: The numerical semigroup of phrases’ lengths in a simple alphabet, The Scientific World Journal 2013 (2013),...
    • Robles-Pérez, A.M., Rosales, J.C.: Frobenius pseudo-varieties in numerical semigroups. Ann. Mat. Pura Appl. 194, 275–287 (2015)
    • Rosales, J.C., Branco, M.B.: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups. J. Pure Appl....
    • Rosales, J.C., García-Sánchez, P.A.: Numerical semigroups, Developments in Mathematics, vol. 20. Springer, New York (2009)
    • Rosen, K.H.: Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000)
    • Selmer, E.S.: On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 293(294), 1–17 (1977)
    • Stokes, K.: Patterns of ideals numerical semigroups. Semigroup Forum 93, 180–200 (2016)
    • Sylvester, J.J.: Problem 7382, The Educational Times, and Journal of the College of Preceptors, New Ser., 36(266) (1883), 177. Solution by...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno