Ir al contenido

Documat


The inhomogeneous Cauchy-Riemann equation for weighted smooth vector-valued functions on strips with holes

  • Kruse, Karsten [1]
    1. [1] Hamburg University of Technology

      Hamburg University of Technology

      Hamburg, Freie und Hansestadt, Alemania

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 74, Fasc. 1, 2023, págs. 81-112
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00337-2
  • Enlaces
  • Resumen
    • This paper is dedicated to the question of surjectivity of the Cauchy-Riemann operator \overline{\partial } on spaces {\mathcal {E}}{\mathcal {V}}(\varOmega ,E) of {\mathcal {C}}^{\infty }-smooth vector-valued functions whose growth on strips along the real axis with holes K is induced by a family of continuous weights {\mathcal {V}}. Vector-valued means that these functions have values in a locally convex Hausdorff space E over {\mathbb {C}}. We derive a counterpart of the Grothendieck-Köthe-Silva duality {\mathcal {O}}({\mathbb {C}}\setminus K)/{\mathcal {O}}({\mathbb {C}})\cong {\mathscr {A}}(K) with non-empty compact K\subset {\mathbb {R}} for weighted holomorphic functions. We use this duality and splitting theory to prove the surjectivity of \overline{\partial }:{\mathcal {E}} {\mathcal {V}}(\varOmega ,E)\rightarrow {\mathcal {E}}{\mathcal {V}} (\varOmega ,E) for certain E. This solves the smooth (holomorphic, distributional) parameter dependence problem for the Cauchy-Riemann operator on {\mathcal {E}}{\mathcal {V}}(\varOmega ,{\mathbb {C}}).

  • Referencias bibliográficas
    • Berenstein, C.A., Gay, R.: Complex variables. In: Graduate Texts in Mathematics, vol. 125. Springer, New York (1991) https://doi-org.sire.ub.edu/10.1007/978-1-4612-3024-3
    • Bierstedt, K.D., Gramsch, B., Meise, R.: Lokalkonvexe Garben und gewichtete induktive Limites {\mathfrak{F}}-morpher Funktionen. In: J. Blatter,...
    • Bonet, J., Domański, P.: Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short...
    • Bonet, J., Domański, P.: The splitting of exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential...
    • Bonet, J., Jordá, E., Maestre, M.: Vector-valued meromorphic functions. Arch. Math. (Basel) 79(5), 353–359 (2002). https://doi-org.sire.ub.edu/10.1007/PL00012457
    • Dierolf, B.: Splitting theory for PLH spaces. Ph.D. thesis, Universität Trier (2014). https://doi-org.sire.ub.edu/10.25353/ubtr-xxxx-4b2b-53a5
    • Dierolf, B., Sieg, D.: Splitting and parameter dependence in the category of PLH spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser....
    • Domański, P., Langenbruch, M.: Vector valued hyperfunctions and boundary values of vector valued harmonic and holomorphic functions. Publ....
    • Floret, K., Wloka, J.: Einführung in die Theorie der lokalkonvexen Räume. Lecture Notes in Math, vol. 56. Springer, Berlin (1968)
    • Grosse-Erdmann, K.G.: A weak criterion for vector-valued holomorphy. Math. Proc. Camb. Phil. Soc. 136(2), 399–411 (2004). https://doi-org.sire.ub.edu/10.1017/S0305004103007254
    • Grothendieck, A.: Sur certains espaces de fonctions holomorphes. I. J. Reine Angew. Math. 192, 35–64 (1953). https://doi-org.sire.ub.edu/10.1515/crll.1953.192.35
    • Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucléaires, Mem. Amer. Math. Soc., vol. 16, 4th edn. AMS, Providence (1966)....
    • Ion, P.D.F., Kawai, T.: Theory of vector-valued hyperfunctions. Publ. RIMS Kyoto Univ. 11, 1–19 (1975)
    • Ito, Y., Nagamachi, S.: Theory of H-valued Fourier hyperfunctions. Proc. Japan Acad. Ser. A Math. Sci 51(7), 558–561 (1975). https://doi-org.sire.ub.edu/10.3792/pja/1195518523
    • Junker, K.: Vektorwertige Fourierhyperfunktionen und ein Satz vom Bochner-Schwartz-Typ. Ph.D. thesis, Universität Düsseldorf (1979)
    • Kalmes, T.: Surjectivity of differential operators and linear topological invariants for spaces of zero solutions. Rev. Mat. Complut. 32,...
    • Kawai, T.: On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients. J. Fac....
    • Köthe, G.: Topological Vector Spaces I. Grundlehren Math. Wiss, vol. 159. Springer, Berlin (1969). https://doi-org.sire.ub.edu/10.1007/978-3-642-64988-2
    • Kruse, K.: Vector-valued Fourier hyperfunctions. Ph.D. thesis, Universität Oldenburg (2014)
    • Kruse, K.: The approximation property for weighted spaces of differentiable functions. In: M. Kosek (ed.) Function Spaces XII (Proc., Kraków,...
    • Kruse, K.: On the nuclearity of weighted spaces of smooth functions. Ann. Polon. Math. 124(2), 173–196 (2020). https://doi-org.sire.ub.edu/10.4064/ap190728-17-11
    • Kruse, K.: Parameter dependence of solutions of the Cauchy-Riemann equation on spaces of weighted smooth functions. RACSAM Rev. R. Acad. Cienc....
    • Kruse, K.: Surjectivity of the \overline{\partial }-operator between weighted spaces of smooth vector-valued functions. Complex Var. Elliptic...
    • Langenbruch, M.: Asymptotic Fourier and Laplace transformations for hyperfunctions. Studia Math. 205(1), 41–69 (2011). https://doi-org.sire.ub.edu/10.4064/sm205-1-4
    • Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Graduate Texts in Mathematics, vol. 2. Clarendon Press, Oxford (1997)
    • Morimoto, M.: Analytic functionals with non-compact carrier. Tokyo J. Math. 1(1), 77–103 (1978). https://doi-org.sire.ub.edu/10.3836/tjm/1270216594
    • Morimoto, M.: An Introduction to Satos Hyperfunctions. Translations of Mathematical Monographs, vol. 129. AMS, Providence (1992)
    • Saburi, Y.: Fundamental properties of modified Fourier hyperfunctions. Tokyo J. Math. 8(1), 231–273 (1985). https://doi-org.sire.ub.edu/10.3836/tjm/1270151582
    • Sebastião e Silva, J.: As funções analíticas e a análise funcional. Port. Math. 9(1–2), 1–130 (1950)
    • Vogt, D.: Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ. Studia Math. 71(3), 251–270 (1982)....
    • Vogt, D.: On the solvability of P(D)f=g for vector valued functions. In: H. Komatsu (ed.) Generalized Functions and Linear Differential...
    • Vogt, D.: On the functors \text{ Ext}^{1}(E, F) for Fréchet spaces. Studia Math. 85(2), 163–197 (1987). https://doi-org.sire.ub.edu/10.4064/sm-85-2-163-197
    • Vogt, D., Wagner, M.J.: Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau. Studia Math. 67(3), 225–240 (1980)....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno