Ir al contenido

Documat


Prediction of Small-Wind Turbine Performance from Time Series Modelling Using Intelligent Techniques

  • Santiago Porras [1] ; Esteban Jove [2] Árbol académico ; Bruno Baruque [1] Árbol académico ; José Luis Calvo-Rolle [2] Árbol académico
    1. [1] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

    2. [2] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference: Guimarães, Portugal; November 4–6, 2020. Proceedings / Cesar Analide (ed. lit.), Paulo Novais (ed. lit.) Árbol académico, David Camacho Fernández (ed. lit.) Árbol académico, Hujun Yin (ed. lit.), Vol. 2, 2020 (Part II), ISBN 978-3-030-62365-4, págs. 541-548
  • Idioma: inglés
  • DOI: 10.1007/978-3-030-62365-4_52
  • Enlaces
  • Resumen
    • The present research work deals the model creation obtaining for power generation prediction of a small-wind turbine, based on the atmospheric variables of its location. For testing purposes, a real dataset has been obtained of a bio-climate house located in Sotavento Experimental Wind Farm in the north of Spain. A deep study of the system and atmospheric variables has been performed. Then, some different regression techniques have been tested for accomplishing prediction, obtaining excellent results.

  • Referencias bibliográficas
    • Aláiz-Moretón, H., Castejón-Limas, M., Casteleiro-Roca, J.L., Jove, E., Fernández Robles, L., Calvo-Rolle, J.L.: A fault detection system...
    • Casteleiro-Roca, J.L., et al.: Short-term energy demand forecast in hotels using hybrid intelligent modeling. Sensors 19(11), 2485 (2019)
    • Do Nascimento Camelo, H., Lucio, P., Junior, J., De Carvalho, P., Santos, D.: Innovative hybrid models for forecasting time series applied...
    • Government of Spain: Real decreto-ley 15/2018, de 5 de octubre, de medidas urgentes para la transición energética y la protección de los consumidores...
    • Infield, D., Freris, L.: Renewable Energy in Power Systems. Wiley, Hoboken (2020)
    • Olsson, J., Niemczynowicz, J., Berndtsson, R., Larson, M.: An analysis of the rainfall time structure by box counting-some practical implications....
    • Owusu, P.A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sus-tainability issues and climate change mitigation. Cogent Eng....
    • Shi, J., Qu, X., Zeng, S.: Short-term wind power generation forecasting: Direct versus indirect arima-based approaches. Int. J. Green Energy...
    • Sorknæs, P., Djørup, S.R., Lund, H., Thellufsen, J.Z.: Quantifying the influence of wind power and photovoltaic on future electricity market...
    • Wahid, F., Ghazali, R., Fayaz, M., Shah, A.S.: A simple and easy approach for home appliances energy consumption prediction in residential...
    • Wang, R., Lu, S., Feng, W.: A novel improved model for building energy consumption prediction based on model integration. Appl. Energy 262,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno