Ir al contenido

Documat


Prediction of Small-Wind Turbine Performance from Time Series Modelling Using Intelligent Techniques

  • Santiago Porras [1] ; Esteban Jove [2] ; Bruno Baruque [1] ; José Luis Calvo-Rolle [2]
    1. [1] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

    2. [2] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference: Guimarães, Portugal; November 4–6, 2020. Proceedings / Cesar Analide (ed. lit.), Paulo Novais (ed. lit.) Árbol académico, David Camacho Fernández (ed. lit.) Árbol académico, Hujun Yin (ed. lit.), Vol. 2, 2020 (Part II), ISBN 978-3-030-62365-4, págs. 541-548
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The present research work deals the model creation obtaining for power generation prediction of a small-wind turbine, based on the atmospheric variables of its location. For testing purposes, a real dataset has been obtained of a bio-climate house located in Sotavento Experimental Wind Farm in the north of Spain. A deep study of the system and atmospheric variables has been performed. Then, some different regression techniques have been tested for accomplishing prediction, obtaining excellent results.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno