Ir al contenido

Documat


Cloud Type Identification Using Data Fusion and Ensemble Learning

  • Javier Huertas-Tato [1] ; Martín, Alejandro [2] ; David Camacho [2]
    1. [1] Universidad Europea de Madrid

      Universidad Europea de Madrid

      Madrid, España

    2. [2] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

  • Localización: Intelligent Data Engineering and Automated Learning – IDEAL 2020. 21st International Conference: Guimarães, Portugal; November 4–6, 2020. Proceedings / Cesar Analide (ed. lit.), Paulo Novais (ed. lit.) Árbol académico, David Camacho Fernández (ed. lit.) Árbol académico, Hujun Yin (ed. lit.), Vol. 2, 2020 (Part II), ISBN 978-3-030-62365-4, págs. 137-147
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Cloud type classification is a complex multi-class problem where total sky images are analysed to determine their category such as Stratus or Cirrus, among others. However, many properties of this domain make high classification accuracy difficult to achieve. In this paper, we design a novel fusion approach, showing that recent image classification architectures based on deep learning, such as Convolutional Neural Networks, can be improved using statistical features directly calculated from images. In this research, three powerful CNNs have been trained on a comprehensive dataset: VGG-19, Inception-ResNet V2 and Inception V3. Simultaneously, a pool of standard machine learning classifiers have been trained on 14 different statistical characteristics on each colour channel. The results evidence that a fusion approach of the predictions of an image-trained CNN and a feature-trained Random Forest classifier improves the classification ability of both methods individually, reaching 95.05% macro average weighted precision over 12 classes in a complex highly imbalanced dataset with noisy examples.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno