Ir al contenido

Documat


Distance Metric Learning with Prototype Selection for Imbalanced Classification

    1. [1] Universidad de Granada

      Universidad de Granada

      Granada, España

  • Localización: Hybrid Artificial Intelligent Systems: 16th International Conference, HAIS 2021. Bilbao, Spain. September 22–24, 2021. Proceedings / coord. por Hugo Sanjurjo González, Iker Pastor López Árbol académico, Pablo García Bringas Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-86271-8, págs. 391-402
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Distance metric learning is a discipline that has recently become popular, due to its ability to significantly improve similarity based learning methods, such as the nearest neighbors classifier. Most proposals related to this topic focus on standard supervised learning and weak-supervised learning problems. In this paper, we propose a distance metric learning method to handle imbalanced classification via prototype selection. Our method, which we have called condensed neighborhood components analysis (CNCA), is an improvement of the classic neighborhood components analysis, to which foundations of the condensed nearest neighbors undersampling method are added. We show how to implement this algorithm, and provide a Python implementation. We have also evaluated its performance over imbalanced classification problems, resulting in very good performance using several imbalanced score metrics.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno