Ir al contenido

Documat


Companion Losses for Deep Neural Networks

  • David Díaz-Vico [1] ; Angela Fernández [1] ; Dorronsoro, José R. [1] [1]
    1. [1] Universidad Autónoma de Madrid

      Universidad Autónoma de Madrid

      Madrid, España

  • Localización: Hybrid Artificial Intelligent Systems: 16th International Conference, HAIS 2021. Bilbao, Spain. September 22–24, 2021. Proceedings / coord. por Hugo Sanjurjo González, Iker Pastor López Árbol académico, Pablo García Bringas Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-86271-8, págs. 538-549
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Modern Deep Neuronal Network backends allow a great flexibility to define network architectures. This allows for multiple outputs with their specific losses which can make them more suitable for particular goals. In this work we shall explore this possibility for classification networks which will combine the categorical cross-entropy loss, typical of softmax probabilistic outputs, the categorical hinge loss, which extends the hinge loss standard on SVMs, and a novel Fisher loss which seeks to concentrate class members near their centroids while keeping these apart.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno