Ir al contenido

Documat


A Binary Classification Model for Toxicity Prediction in Drug Design

  • Génesis Varela-Salinas [1] ; Camacho-Cruz, Hugo E. [1] ; Alfredo Juárez Saldivar [2] ; Martinez-Rodriguez, Jose L. [1] ; Josue Rodriguez-Rodriguez [1] ; Carlos Garcia-Perez [3]
    1. [1] Universidad Autónoma de Tamaulipas

      Universidad Autónoma de Tamaulipas

      México

    2. [2] Instituto Politécnico Nacional

      Instituto Politécnico Nacional

      México

    3. [3] Helmholtz Zentrum München

      Helmholtz Zentrum München

      Kreisfreie Stadt München, Alemania

  • Localización: Hybrid Artificial Intelligent Systems: 16th International Conference, HAIS 2021. Bilbao, Spain. September 22–24, 2021. Proceedings / coord. por Hugo Sanjurjo González, Iker Pastor López Árbol académico, Pablo García Bringas Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-86271-8, págs. 149-157
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Toxicity in drug design is a very important step prior to human or animal evaluation phases. Establishing drug toxicity involves the modification or redesign of the drug into an analog to suppress or reduce the toxicity. In this work, two different deep neural networks architectures and a proposed model to classify drug toxicity were evaluated. Three datasets of molecular descriptors were build based on SMILES from the Tox21 database and the AhR protein to test the accuracy prediction of the models. All models were tested with different sets of hyperparameters. The proposed model showed higher accuracy and lower loss compared to the other architectures. The number of descriptors played a key roll in the accuracy of the proposed model along with the Adam optimizer.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno