Ir al contenido

Documat


More Interpretable Decision Trees

  • Eugene Gilmore [1] ; Vladimir Estivill-Castro [2] Árbol académico ; René Hexel [1]
    1. [1] Griffith University

      Griffith University

      Australia

    2. [2] Universitat Pompeu Fabra

      Universitat Pompeu Fabra

      Barcelona, España

  • Localización: Hybrid Artificial Intelligent Systems: 16th International Conference, HAIS 2021. Bilbao, Spain. September 22–24, 2021. Proceedings / coord. por Hugo Sanjurjo González, Iker Pastor López Árbol académico, Pablo García Bringas Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2021, ISBN 978-3-030-86271-8, págs. 280-292
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We present a new Decision Tree Classifier (DTC) induction algorithm that produces vastly more interpretable trees in many situations. These understandable trees are highly relevant for explainable artificial intelligence, fair automatic classification, and human-in-the-loop learning systems. Our method is an improvement over the Nested Cavities (NC) algorithm. That is, we profit from the parallel-coordinates visualisation of high dimensional datasets. However, we build a hybrid with other decision tree heuristics to generate node-expanding splits. The rules in the DTCs learnt using our algorithm have a straightforward representation and, thus, are readily understood by a human user, even though our algorithm constructs rules whose nodes can involve multiple attributes. We compare our algorithm to the well-known decision tree induction algorithm C4.5, and find that our methods produce similar accuracy with significantly smaller trees. When coupled with a humanin-the-loop-learning (HILL) system, our approach can be highly effective for inferring understandable patterns in datasets.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno