Ir al contenido

Documat


A Proof of Concept in Multivariate Time Series Clustering Using Recurrent Neural Networks and SP-Lines

  • Iago Vázquez [1] ; Villar, José R. [2] Árbol académico ; Javier Sedano [1] Árbol académico ; Svetlana Simić [3] ; Cal, Enrique de la [2] Árbol académico
    1. [1] Instituto Tecnológico de Castilla y León

      Instituto Tecnológico de Castilla y León

      Burgos, España

    2. [2] Universidad de Oviedo

      Universidad de Oviedo

      Oviedo, España

    3. [3] University of Novi Sad

      University of Novi Sad

      RS.VO.6.3194359, Serbia

  • Localización: Hybrid Artificial Intelligent Systems. 14th International Conference, HAIS 2019: León, Spain, September 4–6, 2019. Proceedings / coord. por Hilde Pérez García Árbol académico, Lidia Sánchez González Árbol académico, Manuel Castejón Limas Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2019, ISBN 978-3-030-29858-6, págs. 346-357
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Big Data and the IoT explosion has made clustering multivariate Time Series (TS) one of the most effervescent research fields. From Bio-informatics to Business and Management, multivariate TS are becoming more and more interesting as they allow to match events the co-occur in time but that is hardly noticeable. This study represents a step forward in our research. We firstly made use of Recurrent Neural Networks and transfer learning to analyze each example, measuring similarities between variables. All the results are finally aggregated to create an adjacency matrix that allows extracting the groups. In this second approach, splines are introduced to smooth the TS before modeling; also, this step avoid to learn from data with high variation or with noise. In the experiments, the two solutions are compared suing the same proof-of-concept experimentation.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno