Ir al contenido

Documat


Anomaly Detection Over an Ultrasonic Sensor in an Industrial Plant

  • Esteban Jove [1] [2] Árbol académico ; José-Luis Casteleiro-Roca [1] Árbol académico ; Jose Manuel González-Cava [2] ; Héctor Quintián [1] Árbol académico ; Héctor Alaiz-Moretón [3] Árbol académico ; Bruno Baruque [4] Árbol académico ; Méndez-Pérez, Juan Albino [2] Árbol académico ; José Luis Calvo-Rolle [1] Árbol académico
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    2. [2] Universidad de La Laguna

      Universidad de La Laguna

      San Cristóbal de La Laguna, España

    3. [3] Universidad de León

      Universidad de León

      León, España

    4. [4] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

  • Localización: Hybrid Artificial Intelligent Systems. 14th International Conference, HAIS 2019: León, Spain, September 4–6, 2019. Proceedings / coord. por Hilde Pérez García Árbol académico, Lidia Sánchez González Árbol académico, Manuel Castejón Limas Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2019, ISBN 978-3-030-29858-6, págs. 492-503
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The significant industrial developments in terms of digitalization and optimization, have focused the attention on anomaly detection techniques. This work presents a detailed study about the performance of different one-class intelligent techniques, used for detecting anomalies in the performance of an ultrasonic sensor. The initial dataset is obtained from a control level plant, and different percentage variations in the sensor measurements are generated. For each variation, the performance of three one-class classifiers are assessed, obtaining very good results.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno