Ir al contenido

Documat


On Penalty-Based Aggregation Functions and Consensus

  • Gleb Beliakov [1] ; Tomasa Calvo [2] ; Simon James
    1. [1] Deakin University

      Deakin University

      Australia

    2. [2] Universidad de Alcalá

      Universidad de Alcalá

      Alcalá de Henares, España

  • Localización: Consensual Processes / coord. por Enrique Herrera Viedma Árbol académico, José Luis García Lapresta Árbol académico, Janusz Kacprzyk Árbol académico, Mario Fedrizzi, Hannu Nurmi, Slawomir Zadrożny, 2011, ISBN 978-3-642-20533-0, págs. 23-40
  • Idioma: inglés
  • DOI: 10.1007/978-3-642-20533-0_2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The problem of aggregating individual preferences in order to arrive at a group consensus arises naturally in elections where a candidate must be chosen that best represents the individuals’ differing opinions. Other contexts include the judging of sporting competitions and the fusion of sensor readings. In these applications it makes sense that the aggregated result should be as close as possible to the individual inputs, giving rise to the need for methods that minimize this difference. Penalty-based aggregation functions are precisely those functions that aim to accomplish this, drawing upon various notions of “difference” in varying situations.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno