Ir al contenido

Documat


Second derivative Lipschitz type inequalities for an integral transform of positive operators in Hilbert spaces

  • Sever Silvestru Dragomir [1]
    1. [1] Mathematics, College of Engineering & Science Victoria University, PO Box 14428, Melbourne City 8001, Australia
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 37, Nº 2, 2022, págs. 261-282
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.37.2.261
  • Enlaces
  • Referencias bibliográficas
    • [1] H. Araki, S. Yamagami, An inequality for Hilbert-Schmidt norm, Comm. Math. Phys. 81 (1981), 89 – 96.
    • [2] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl. 208/209 (1994), 367 – 376.
    • [3] R. Bhatia, Perturbation bounds for the operator absolute value. Linear Algebra Appl. 226/228 (1995), 639 – 645.
    • [4] R. Bhatia, “ Matrix Analysis ”, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
    • [5] R. Bhatia, D. Singh, K.B. Sinha, Differentiation of operator functions and perturbation bounds, Comm. Math. Phys. 191 (3) (1998), 603...
    • [6] R. Coleman, “ Calculus on Normed Vector Spaces ”, Springer, New York, 2012.
    • [7] Yu.B. Farforovskaya, An estimate of the nearness of the spectral decompositions of self-adjoint operators in the Kantorovic-RubinÜtein...
    • [8] Yu.B. Farforovskaya, An estimate of the norm kf (B) − f (A)k for selfadjoint operators A and B (in Russian), Zap. Naucn. Sem. Leningrad....
    • [9] Yu.B. Farforovskaya, L. Nikolskaya, Modulus of continuity of operator functions, Algebra i Analiz 20 (3) (2008), 224 – 242; translation...
    • [10] J.I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), 301 – 306.
    • [11] T. Furuta, Precise lower bound of f (A) − f (B) for A > B > 0 and non-constant operator monotone function f on [0, ∞), J. Math....
    • [12] E. Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann. (in German) 123 (1951), 415 – 438.
    • [13] T. Kato, Continuity of the map S → |S| for linear operators, Proc. Japan Acad. 49 (1973), 143 – 162.
    • [14] K. Löwner, Über monotone MatrixFunktionen, Math. Z. (in German) 38 (1934) 177 – 216.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno