Ir al contenido

Documat


Extensions, crossed modules and pseudoquadratic Lie type superalgebras

  • M. Pouye [1] ; B. Kpamegan [2]
    1. [1] Institut de Mathématiques et de Sciences Physiques (IMSP), Bénin
    2. [2] Département de Mathématiques, FAST, UAC, Bénin
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 37, Nº 2, 2022, págs. 153-184
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.37.2.153
  • Enlaces
  • Resumen
    • Extensions and crossed modules of Lie type superalgebras are introduced and studied.We construct homology and cohomology theories of Lie-type superalgebras. The notion of leftsuper-invariance for a bilinear form is defined and we consider Lie type superalgebras endowed withnondegenerate, supersymmetric and left super-invariant bilinear form. Such Lie type superalgebrasare called pseudo quadratic Lie type superalgebras. We show that any pseudo quadratic Lie typesuperalgebra induces a Jacobi-Jordan superalgebra. By using the method of double extension, westudy pseudo quadratic Lie type superalgebras and theirs associated Jacobi-Jordan superalgebras

  • Referencias bibliográficas
    • [1] A.L. Agore, G. Militaru, On a type of commutative algebras, Linear Algebra Appl. 485 (2015), 222 – 249.
    • [2] I. Bajo, S. Benayadi, M. Bordemann, Generalized double extension and descriptions of quadratic Lie superalgebras, arxiv.org/0712.0228v1,...
    • [3] A. Baklouti, S. Benayadi, Symplectic Jacobi-Jordan algebras, Linear Multilinear Algebra 69 (8) (2021), 1557 – 1578.
    • [4] S. Benayadi, S. Hidri, Leibniz algebras with invariant bilinear form and related Lie algebra, Comm. Algebra 44 (2016), 3538 – 3556.
    • [5] D. Burde, A. Fialowski, Jacobi-Jordan algebras, Linear Algebra Appl. 459 (2014), 589 – 594.
    • [6] L.M. Camacho, I. Kaygorodov, V. Lopatkin, M.A. Salim, The variety of dual mock-Lie algebras, Commun. Maths. 28 (2020), 161 – 178.
    • [7] C. Cuvier, Algèbres de Leibnitz: définitions, propriétés, Ann. Sci. École Norm. Sup. (4) 27 (1) (1994), 1 – 45.
    • [8] E. Getzler, M. Kapranov, Cyclic operads and cyclic homology, in “ Geometry, Topology & Physics ”, International Press, Cambridge,...
    • [9] N. Kamiya, S. Okubo, Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra 198 (1997), 388 – 411.
    • [10] P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 35 (1934),...
    • [11] M. Pouye, B. Kpamegan, L. Todjihoundé, Quadratic Lie-type superalgebras, J. Adv. Math. Stud. 14 (3) (2021), 399 – 419.
    • [12] K.A. Zhevlakov, Solvability and nilpotence of Jordan rings, Algebra i Logika Sem 5 (1966), 37 – 58.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno