Ir al contenido

Documat


The Existence of Evolution Systems of Measures of Non-autonomous Stochastic Differential Equations with Infinite Delays

  • Zhe Pu [1] ; Yayu Li [1] ; Zhigang Pan [1] ; Dingshi Li [1]
    1. [1] Southwest Jiaotong University

      Southwest Jiaotong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned with the dynamical behavior of nonautonomous stochastic differential equations with infinite delays. A new generalized Halanay inequality is introduced to estimate the solutions. By using the generalized Halanay inequality, we obtain that the mean-square of solution maps of such equations are exponentially attracted by a bounded set and are exponentially convergent from different initial data. Furthermore, the existence of the evolution system of measures for the stochastic equations and the stability in distribution of the evolution system of measures are also showed.

  • Referencias bibliográficas
    • Bao, J., Wang, F.Y., Yuan, C.: Ergodicity for neutral type SDEs with infinite length of memory. Math.Nachr.293(9), 1675–1690 (2018)
    • 2. Caraballo, T., Kloeden, P.E., Schmalfuß, B.: Exponentially stable stationary solutions for stochasticevolution equations and their perturbation....
    • 3. Chen, Z., Li, X., Wang, B.: Invariant measures of stochastic delay lattice systems. Discrete Cont.Dyn.-B26(6), 3235 (2001)
    • 4. Prato, G.D., Röckner, M.: Dissipative stochastic equations in Hilbert space with time dependent coef-ficients. Atti Accad. Naz. Lincei...
    • 5. Du, N.H., Dang, N.H., Dieu, N.T.: On stability in distribution of stochastic differential delay equationswith Markovian switching. Syst....
    • 6. Fei, C., Fei, W.Y., Mao, X., Xia, D., Yan, L.: Stabilization of highly nonlinear hybrid systems byfeedback control based on discrete-time...
    • 7. Li, D., Li, B.: Global mean square exponential stability of impulsive non-autonomous stochastic neuralnetworks with mixed delays. Neural...
    • 8. Li, D., Lin, Y., Pu, Z.: Non-autonomous stochastic lattice systems with Markovian switching. arXivpreprintarXiv: 2204.00776(2022)
    • 9. Li, D., Wang, B., Wang, X.: Limiting behavior of invariant measures of stochastic delay lattice systems.J. Dyn. Differ. Equ.34, 1–35 (2021)
    • 10. Liu, L., Caraballo, T.: Analysis of a stochastic 2D-Navier–Stokes model with infinite delay. J. Dyn.Differ. Equ.31(4), 2249–2274 (2019)
    • 11. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1992)
    • 12. Mao, X.: Stabilization of continuous-time hybrid stochastic differential equations by discrete-timefeedback control. Automatica49(12),...
    • 13. Prato, G. D., Röckner, M.: A note on evolution systems of measures for time-dependent stochasticdifferential equations. In: Seminar on...
    • 14. Schmalfuss, B.: Lyapunov functions and non-trivial stationary solutions of stochastic differential equa-tions. Dyn. Syst.16(4), 303–317...
    • 15. Shao, J.: Stabilization of regime-switching processes by feedback control based on discrete timeobservations. SIAM J. Control Optim.55(2),...
    • 16. Wang, B.: Dynamics of stochastic Reaction-Diffusion lattice systems driven by nonlinear noise. J.Math. Anal. Appl.477(1), 104–132 (2019)
    • 17. Wang, R., Caraballo, T., Tuan, N.H.: Asymptotic stability of evolution systems of probability mea-sures for nonautonomous stochastic systems:...
    • 18. Wang, Y., Wu, F., Mao, X.: Stability in distribution of stochastic functional differential equations. Syst.Control Lett.132, 104513 (2019)
    • 19. Wu, F., Hu, S.: The Lasalle-type theorem for neutral stochastic functional differential equations withinfinite delay. Discrete Cont. Dyn-A32(3),...
    • 20. Wu, F., Hu, S., Huang, C.: Robustness of general decay stability of nonlinear neutral stochastic func-tional differential equations with...
    • 21. Wu, F., Yin, G., Mei, H.: Stochastic functional differential equations with infinite delay: existenceand uniqueness of solutions, solution...
    • 22. Yang, X., Zhu, Q.: Stabilization of stochastic retarded systems based on sampled-data feedback control.IEEE. T. Syst. Man. Cybern.-Syst.51(9),...
    • 23. Yuan, C., Mao, X.: Asymptotic stability in distribution of stochastic differential equations with Marko-vian switching. Stoch. Proc. Appl.103(2),...
    • 24. Yuan, C., Zou, J., Mao, X.: Stability in distribution of stochastic differential delay equations withMarkovian switching. Syst. Control...
    • 25. Shu, X.B., Shi, Y.: A study on the mild solution of impulsive fractional evolution equations. Appl.Math. Comput.273, 465–476 (2016)
    • 26. Guo, Y., Chen, M., Shu, X.B., Xu, F.: The existence and Hyers–Ulam stability of solution for almostperiodical fractional stochastic differential...
    • 27. Shu, L.X., Shu, X.B., Mao, J.Z.: Approximate controllability and existence of mild solutions forRiemann–Liouville fractional stochastic...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno