Ir al contenido

Documat


Dimension of a Class of Intrinsically Transversal Solenoidal Attractors in High Dimensions

  • Ricardo Bortolotti [1] ; Eberson Ferreira da Silva [2]
    1. [1] Universidade Federal de Pernambuco-UFPE
    2. [2] Universidade Federal Rural de Pernambuco-UFRPE
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the fractal dimension of a class of solenoidal attractors in dimensions greater or equal than 3, proving that if the contraction is sufficiently strong, the expansion is close to conformal and the attractor satisfy a geometrical condition of transversality between its components, then the Hausdorff and box-counting dimension of every stable section of the attractor have the same value, which corresponds to the zero of the topological pressure as in Bowen’s formula. We also calculate the dimension of the attractor and prove that it is continuous in this class.

  • Referencias bibliográficas
    • 1. Moran, P.A.P.: On plane sets of fractional dimensions. Proc. Lond. Math. Soc.51, 415–423 (1949)
    • 2. Bowen, R.: Hausdorff dimension of quasi-circles. Publ. Math. Inst. Hautes Etudes Sci.50, 259–273(1979)
    • 3. Mccluskey, H., Manning, A.: Hausdorff dimension for horseshoes. Ergod. Theory Dyn. Syst.3, 231–260 (1983)
    • 4. Barreira, L.: Ergodic Theory, Hyperbolic Dynamics and Dimension Theory. Universitext, Springer(2012)
    • 5. Falconer, K.: The Hausdorff dimension of self affine fractals. Math. Proc. Camb. Philos. Soc.103,339–350 (1988)
    • 6. Simon, K., Solomyak, B.: Hausdorff dimension for horseshoes inR3. Ergod. Theory Dyn. Syst.19(5),1343–1363 (1999)
    • 7. Bonatti, C., Diaz, L., Viana, M.: Discontinuity of the Hausdorff dimension of hyperbolic sets. C. R.Acad. Sci. Paris Sr. I Math.320, 713–718...
    • 8. Simon, K.: Hausdorff dimension of hyperbolic attractors inR3. Fractal Geom. Stoch. III, 79–92 (2004)
    • 9. Barreira, L., Gelfert, K.: Dimension estimates in smooth dynamics: a survey of recent results. Ergod.Theory Dyn. Syst.31, 641–671 (2011)
    • 10. Hasselblatt, B., Schmeling, J.: Dimension product structure of hyperbolic sets. In: Hasselblatt, B., Brin,M., Pesin, Y. (eds.) Modern...
    • 11. Bothe, H.G.: The Hausdorff dimension of certain solenoids. Ergod. Theory Dyn. Syst.15, 449–474(1995)
    • 12. Simon, K.: The Hausdorff dimension of the Smale–Williams solenoid with different contraction coef-ficients. Proc. Am. Math. Soc.125(4),...
    • 13. Mohammadpour, R., Przytycki, F., Rams, M.: Hausdorff and packing dimensions and measures fornonlinear transversally non-conformal thin...
    • 14. Pesin,Y.,Weiss,H.:Onthedimensionofdeterministicandrandomcantor-likesets,symbolicdynamics,and the Eckmann–Ruelle conjecture. Commun. Math....
    • 15. Bortolotti, R., Silva, E.F.: Hausdorff dimension of thin higher-dimensional solenoidal attractors. Non-linearity35, 3261–3282 (2022)
    • 16. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, 2nd edn. Wiley (2003)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno