Ir al contenido

Documat


Una nueva prueba para una conjetura de Özban

  • Autores: Aníbal Coronel, Esperanza Lozada
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 39, Nº. 2, 2021, págs. 129-135
  • Idioma: español
  • DOI: 10.18273/revint.v39n2-2021001
  • Enlaces
  • Resumen
    • español

      En este artículo presentamos una prueba corta y elemental de la siguiente desigualdad algebraico-trigonométrica de tipo Laub-Ilani: cos(xy) + cos(yx) ≥ cos(xx) + cos(yy) para x, y ∈ [0, π/2] que fue conjeturada por Özban [‘New algebraic-trigonometric inequalities of Laub-Ilani type’, Bull. Aust. Math. Soc. 96 (2017), 87–97] y recientemente probada por Matejíčka [‘Proof of one open inequality of Laub-Ilani type’, Journal of Mathematical Inequalities, 14 (2020), 83–98]. La prueba se basa en las propiedades de las funciones potenciales-exponenciales y trigonométricas.

    • English

      In this paper, we present an elementary short proof of the follow-ing algebraic-trigonometric inequality of Laub-Ilani type:cos(xy)+cos(yx)≥cos(xx) + cos(yy)forx, y∈[0, π/2]which was conjectured by Özban [‘Newalgebraic-trigonometric inequalities of Laub-Ilani type’, Bull. Aust. Math.Soc. 96 (2017), 87–97] and recently proved by Matejíčka [‘Proof of oneopen inequality of Laub-Ilani type’, Journal of Mathematical Inequalities, 14(2020), 83–98]. The proof is based on the properties of the power-exponentialand trigonometric functions.

  • Referencias bibliográficas
    • Referencias Cîrtoaje V., “Proofs of three open inequalities with power-exponential functions”, J. Non-linear Sci. Appl., 4 (2011), No. 2,...
    • Cîrtoaje V., “On some inequalities with power-exponential functions”, J. Inequal. PureAppl. Math., 10 (2009), No. 1, 1–6.
    • Coronel A. and Huancas F., “The proof of three power-exponential inequalities”, J. Inequal. Appl., 509 (2014), No. 1, 1–10. doi: 10.1186/1029-242X-2014-509.
    • Coronel A., Kórus P., Lozada E., and Irazoqui E., “On the Generalization for Some Power Exponential-Trigonometric Inequalities”, Mathematics.,...
    • Laub M. and Ilani I., “A subtle inequality”, Amer. Math. Monthly., 97 (1990), 65–67.
    • Laub M., “Elementary Problems: E3111-E3116”, Amer. Math. Monthly., 92 (1985), 666.doi: 10.2307/2323718.
    • Matejíčka L., “Solution of one conjecture on inequalities with power-exponential functions”, J. Inequal. Pure Appl. Math., 10 (2009), No....
    • Matejíčka L., “Some remarks on Cîrtoaje’s conjecture”, J. Inequal. Appl., 269 (2016), No.1, 1–11. doi: 10.1186/s13660-016-1211-0.
    • Matejíčka L., “On the Cîrtoaje’s conjecture”, J. Inequal. Appl., 152 (2016), No. 1, 1–6. doi:10.1186/s13660-016-1092-2.
    • Matejíčka L., “Next generalization of Cîrtoaje’s inequality”, J. Inequal. Appl., 159 (2017), No. 1, 1–10. doi: 10.1186/s13660-017-1436-6.
    • Matejíčka L., “Proof of one open inequality of Laub-Ilani type”, Journal of Mathematical Inequalities., 14 (2020), No. 1, 83–98. doi: 10.7153/jmi-2020-14-07.
    • Miyagi M. and Nishizawa Y., “A short proof of an open inequality with power-exponential functions”, Aust. J. Math. Anal. Appl., 11 (2014),...
    • Miyagi M. and Nishizawa Y., “Extension of an inequality with power exponential functions”, Tamkang J. Math., 46 (2015), No. 4, 427–433. doi:...
    • Miyagi M. and Nishizawa Y., “A stronger inequality of Cîrtoaje’s one with power exponential functions”, J. Nonlinear Sci. Appl., 8 (2015),...
    • Özban A., “New algebraic-trigonometric inequalities of Laub-Ilani type”, Bull. Aust. Math. Soc., 96 (2017), No. 1, 87–97. doi: 10.1017/S0004972717000156.
    • Qi F. and Debnath L., “Inequalities of power-exponential functions”, J. Inequal. Pure Appl. Math., 1 (2000), No. 2, 1–5.
    • Zeikii A., Cirtoaje V. and Berndt W., Math links. Forum, http://www.mathlinks.ro/Forum/viewtopic.php?t=118722. [cited 11 November 2006].

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno