Ir al contenido

Documat


Algunos tipos especiales de determinantes en extensiones P BW torcidas graduadas.

  • Autores: Héctor Suárez, Duban Cáceres, Armando Reyes
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 39, Nº. 1, 2021, págs. 91-107
  • Idioma: español
  • DOI: 10.18273/revint.v39n1-2021007
  • Enlaces
  • Resumen
    • español

      En este artículo, demostramos que el automorfismo de Nakayama de una extensión PBW torcida graduada sobre un álgebra de Koszul finitamente presentada y Auslander-regular tiene determinante homológico trivial. Una extensión PBW torcida graduada sobre un álgebra conexa R, calculamos su P-determinante y el inverso de σ. En el caso particular de extensiones PBW torcidas cuasi-conmutativas sobre álgebras de Koszul Artin-Schelter regulares, mostramos explícitamente la relación entre el automorfismo de Nakayama del anillo de coeficientes y la extensión. Finalmente, damos condiciones para garantizar que A sea Calabi-Yau. Proporcionamos ejemplos ilustrativos de la teoría con álgebras de interés en geometría algebraica no conmutativa y geometría diferencial no conmutativa.

    • English

      In this paper, we prove that the Nakayama automorphism ofa graded skew PBW extension over a finitely presented Koszul Auslander-regular algebra has trivial homological determinant. Agraded skew PBW extension over a connected algebraR, we compute itsP-determinant and the inverse ofσ. In the particular case of quasi-commutativeskew PBW extensions over Koszul Artin-Schelter regular algebras, we showexplicitly the connection between the Nakayama automorphism of the ring ofcoefficients and the extension. Finally, we give conditions to guarantee thatAis Calabi-Yau. We provide illustrative examples of the theory concerningalgebras of interest in noncommutative algebraic geometry and noncommu-tative differential geometry.

  • Referencias bibliográficas
    • Referencias Acosta J.P. and Lezama O., “Universal property of skew PBW extensions”, Algebra and Discrete Math., 20 (2015), No. 1, 1-12.
    • Artamonov V.A., “Derivations of skew PBW extensions”, Commun. Math. Stat., 3 (2015), No. 4, 449-457. doi: 10.1007/s40304-015-0067-9
    • Artin M. and Schelter W.F., “Graded algebras of global dimension 3”, Adv. Math., 66 (1987), 171-216. doi: 10.1016/0001-8708(87)90034-X
    • Backelin J. and Fröberg R., “Koszul algebras, Veronese subrings and rings with linear resolutions”, Rev. Roumaine Math. Pures Appl., 30 (1985),...
    • Bell A. and Goodearl K., “Uniform rank over differential operator rings and PoincaréBirkhoff-Witt extensions”, Pacific J. Math., 131 (1988),...
    • Carvalho P., Lopes S. and Matczuk J., “Double Ore extensions versus iterated Ore extensions”, Comm. Algebra, 39 (2011), No. 8, 2838-2848....
    • Fajardo W., Gallego C., Lezama O., Reyes A., Suárez H., and Venegas H., Skew PBW Extensions: Ring and Module-theoretic Properties, Matrix...
    • Gallego C. and Lezama O., “Gröbner bases for ideals of σ-PBW extensions”, Comm. Algebra, 39 (2011), No. 1, 50-75. doi: 10.1080/00927870903431209
    • Gómez J.Y. and Suárez H., “Double Ore extensions versus graded skew PBW extensions”, Comm. Algebra, 48 (2020), No. 1, 185-197.
    • Goodearl K.R. and Warfield R.B. Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 2nd ed., vol. 61, Cambridge,...
    • Hashemi E., Khalilnezhad K. and Alhevaz A., “(Σ, ∆)-Compatible skew PBW extension ring”, Kyungpook Math. J., 57 (2017), No. 3, 401-417. doi:...
    • Hashemi E., Khalilnezhad K. and Alhevaz A., “Extensions of rings over 2-primal rings”, Le Matematiche, 54 (2019), No. 1, 141-162. doi: 10.4418/2019.74.1.10
    • Hashemi E., Khalilnezhad K. and Ghadiri Herati M., “Baer and quasi-Baer properties of skew PBW extensions”, J. Algebraic Systems, 7 (2019),...
    • Isaev A.P., Pyatov P.N. and Rittenberg V., “Diffusion algebras”, J. Phys. A., 34 (2001), No. 29, 5815-5834. doi: 10.1088/0305-4470/34/29/306
    • Jordan D., “The graded algebra generated by two Eulerian derivatives”, Algebr. Represent. Theory, 4 (2001), No. 3, 249-275. doi: 10.1023/A:1011481028760...
    • Lezama O., “Computation of point modules of finitely semi-graded rings”, Comm. Algebra, 48 (2020), No. 2, 866-878. doi: 10.1080/00927872.2019.1666404
    • Lezama O. and Gallego C., “d-Hermite rings and skew PBW extensions”, São Paulo J. Math. Sci., 10 (2016), No. 1, 60-72. doi: 10.1007/s40863-015-0010-8
    • Lezama O. and Gómez J., “Koszulity and Point Modules of Finitely Semi-Graded Rings and Algebras”, Symmetry, 11 (2019), No. 7, 1-22. doi: 10.3390/sym11070881
    • Lezama O. and Reyes A., “Some homological properties of skew PBW extensions”, Comm. Algebra, 42 (2014), No. 3, 1200-1230. doi: 10.1080/00927872.2012.735304
    • Lezama O. and Venegas C., “Center of skew PBW extensions”, Internat. J. Algebra Comput., 30 (2020), No. 8, 1625-1650. doi: 10.1142/S0218196720500575
    • Liu Y. and Ma W., “Nakayama automorphism of Ore extensions over polynomial algebras”, Glasg. Math. J., 62 (2020), No. 3, 518-530. doi: 10.1017/s0017089519000259
    • Liu Y., Wang S. and Wu Q.-S., “Twisted Calabi-Yau property of Ore extensions”, J. Noncommut. Geom., 8 (2014), No. 2, 587-609. doi: 10.4171/JNCG/165
    • Lu J., Mao X. and Zhang J.J., “Nakayama automorphism and applications”, Trans. Amer. Math. Soc., 369 (2017), No. 4, 2425-2460. doi: 10.1090/tran/6718
    • Ore O., “Theory of non-commutative polynomials”, Ann. Math, 34 (1933), No. 3, 480-508. doi: 10.2307/1968173
    • Polishchuk A. and Positselski L., Quadratic algebras, American Mathematical Society, vol. 37, Providence, RI, 2005. doi: 10.1090/ulect/037
    • Reyes M., Rogalski D. and Zhang J.J., “Skew Calabi-Yau algebras and homological identities”, Adv. Math., 264 (2014), 308-354. doi: 10.1016/j.aim.2014.07.010
    • Reyes A. and Suárez H., “Armendariz property for skew P BW extensions and their classical ring of quotients”, Rev. Integr. Temas Mat., 34...
    • Reyes A. and Suárez H., “Enveloping Algebra and Skew Calabi-Yau algebras over Skew Poincaré-Birkhoff-Witt extensions”, Far East J. Math. Sci.,...
    • Reyes A. and Suárez H., “Radicals and Köthe’s conjecture for skew PBW extensions”, Commun. Math. Stat., (2019). doi: 10.1007/s40304-019-00189-0
    • Reyes A. and Suárez H., “Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings”, J. Algebra Appl., 19 (2020), No. 12, 21. doi:...
    • Reyes A. and Suárez H., “Skew Poincaré-Birkhoff-Witt extensions over weak zip rings”, Beitr. Algebra Geom., vol. 60 (2019), No. 2, 197-216....
    • Shen Y. and Lu D.-M., “Nakayama automorphisms of P BW deformations and Hopf actions”, Sci. China Math., 59 (2016), No. 4, 661-672. doi: 10.1007/s11425-015-5077-2
    • Shen Y., Zhou G-S. and Lu D-M., “Nakayama automorphisms of twisted tensor products”, J. Algebra, 504 (2018), 445-478. doi: 10.1016/j.jalgebra.2018.02.025
    • Suárez H., “Koszulity for graded skew PBW extensions”, Comm. Algebra, 45 (2017), No. 10, 4569-4580. doi: 10.1080/00927872.2016.1272694
    • Suárez H., Lezama O. and Reyes A., “Calabi-Yau property for graded skew PBW extensions”, Rev. Colombiana Mat., 51 (2017), No. 2, 221-238....
    • Suárez H. and Reyes A., “Koszulity for skew PBW extensions over fields”, JP J. Algebra Number Theory Appl., 39 (2017), No. 2, 181-203. doi:...
    • Suárez H. and Reyes A., “A generalized Koszul property for skew PBW extensions”, Far East J. Math. Sci., 101 (2017), No. 2, 301-320. doi:...
    • Suárez H. and Reyes A., “Nakayama automorphism of some skew PBW extensions”, Ingeniería y Ciencia, 15 (2019), No. 29, 157-177. doi: 10.17230/ingciencia.15.29.6
    • Tumwesigye A.B., Richter J. and Silvestrov S., Centralizers in PBW extensions, Springer, vol. 317, Cham, 2020. doi: 10.1007/978-3-030-41850-2-20
    • Wu Q. and Zhu C., “Skew group algebras of Calabi-Yau algebras”, J. Algebra, 340 (2011), 53-76. doi: 10.1016/j.jalgebra.2011.05.027
    • Zambrano B.A., “Poisson brackets on some skew PBW extensions”, Algebra Discrete Math., 29 (2020), No. 2, 277-302.
    • Zhang J.J. and Zhang J., “Double Ore extensions”, J. Pure Appl. Algebra, 212 (2008), No. 12, 2668-2690. doi: 10.1016/j.jpaa.2008.05.008
    • Zhang J.J. and Zhang J., “Double extension regular algebras of type (14641)”, J. Algebra, 322 (2009), No. 2, 373-409. doi: 10.1016/j.jalgebra.2009.03.041
    • Zhu C., Van Oystaeyen F. and Zhang Y., “Nakayama automorphisms of double Ore extensions of Koszul regular algebras”, Manuscripta Math., 152...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno