Ir al contenido

Documat


An Open Set of Skew Products with Invariant Multi-graphs and Bony Multi-graphs

  • M. Rabiee [1] ; F. H. Ghane [1] ; M. Zaj [1]
    1. [1] Ferdowsi University of Mashhad

      Ferdowsi University of Mashhad

      Irán

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The main goal in this paper is to study attracting invariant multi-graphs for a certain class of skew products. An invariant multi-graph is an invariant compact set which is a finite union of invariant graphs, and thus consists of a finite number of points on each fiber. We introduce invariant bony multi-graphs and construct an open set of skew products over an invertible base map (solenoid map) having attracting invariant multigraphs and bony multi-graphs. These multi-graphs are the support of finitely many ergodic SRB measures. In this study some thermodynamic properties are investigated for these systems. We will provide some sufficient conditions ensuring the existence of equilibrium states supported on invariant multi-graphs. Finally, we extend our results to a family of skew products over a generalized baker map.

  • Referencias bibliográficas
    • 1. Hirsch, M., Pugh, C.: Stable manifolds and hyperbolic sets. Bull. Am. Math. Soc. 75, 149–152 (1969)
    • 2. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. In: Lect. Notes Math., pp. 12–32. Springer, Berlin (1977)
    • 3. Stark, J.: Invariant graphs for forced systems. Phys. D. 109, 163–179 (1997)
    • 4. Stark, J.: Regularity of invariant graphs for forced systems. Ergod. Theory Dyn. Syst. 9, 155–199 (1999)
    • 5. Zaj, M., Fakhari, A., Ghane, F.H., Ehsani, A.: Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid...
    • 6. Zaj, M., Ghane, F.H.: Non hyperbolic Solenoidal thick bony attractors. Qual. Theory Dyn. Syst. 18(1), 35–55 (2019)
    • 7. Campbell, K.M., Davies, M.E.: The existence of inertial functions in skew product systems. Nonlinearity 9, 801–817 (1996)
    • 8. Campbell, K.M.: Observational noise in skew product systems. Phys. D. 107, 43–56 (1997)
    • 9. Stark, J., Sturman, R.: Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity. 13(1), 113–143 (2000)
    • 10. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. A universal concept in nonlinear sciences, Cambridge University Press (2001)
    • 11. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic...
    • 12. Homburg, A.J.: Synchronization in Minimal Iterated Function Systems on Compact Manifolds. Bullet. Brazil. Math. Soc. 49(3), 615–635 (2018)
    • 13. Broomhead, D., Hadjiloucas, D., Nicol, M.: Random and deterministic perturbation of a class of skew-product systems. Dyn. Stab. Syst....
    • 14. Davies, M.E., Campbell, K.M.: Linear recursive filters and nonlinear dynamics. Nonlinearity 9, 487– 499 (1996)
    • 15. Hunt, B.R., Ott, E., Yorke, J.A.: Differentiable generalized synchronization of chaos. Phys. Rev. E 55, 4029 (1997)
    • 16. Pecora, L.M., Carroll, T.L.: Discontinuous and nondifferentiable functions and dimension increase induced by filtering chaotic data. Chaos...
    • 17. Stark, J., Davies, M.E.: Recursive filters driven by chaotic signals. IEE Colloq. Exploit. Chaos in Signal Proce. IEE Digest. 143, 1–516...
    • 18. Jäger, T.: Skew product systems with one-dimensional fibres. Lecture notes for a course given at several summer schools (2013)
    • 19. Jäger, T.: Quasiperiodically forced interval maps with negative Schwarzian derivative. Nonlinearity 16(4), 1239–1255 (2003)
    • 20. Fadaei, S., Keller, G., Ghane, F.H.: Invariant graphs for chaotically driven maps. Nonlinearity. 31(11), 5329–5349 (2018)
    • 21. Kleptsyn, V., Volk, D.: Physical measures for random walks on interval. Mosc. Math. J. 14(2), 339–365 (2014)
    • 22. Kudryashov, Y.G.: Bony attractors. Funkts. Anal. Prilozhen. 44(3), 219–222 (2010)
    • 23. Jäger, T., Keller, G.: Random minimality and continuity of invariant graphs in random dynamical systems. Trans. Amer. Math. Soc. 368,...
    • 24. Gelfert, K., Oliveira, D.: Invariant multi-graphs in step skew products. Dyn. Syst. 39, 1–28 (2019)
    • 25. Viana, M., Yang, J.: (2013) Physical measures and absolute continuity for one-dimensional center direction. Ann. de Inst. Henri Poincare...
    • 26. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes in Math. 470, 78–104 (1975)
    • 27. Ruelle, D., Sinai, Y.G.: From dynamical systems to statistical mechanics and back. Phys. A: Statist. Mechan. Appl. 140(1–2), 1–8 (1986)
    • 28. Sinai, Y.G.: Gibbs measures in ergodic theory. Russian Math. Surveys. 27, 21–69 (1972)
    • 29. Ramos, V., Viana, M.: Equilibrium states for hyperbolic potentials. Nonlinearity 30, 825–847 (2017)
    • 30. Rauch, M.: Variational principles for the topological pressure of measurable potentials. Discrete Contin. Dyn. Syst. Series S. 10(2),...
    • 31. Williams, R.F.: Expanding attractors. Inst. Hautes Etudes Sci. Publ. Math. 43, 169–203 (1974)
    • 32. Mane, R.: Ergodic Theory and Differentiable Dynamics of Ergebnisse der Mathematik und ihrer Grenzgebiete Results in Mathematics and Related...
    • 33. Arnold, L.: Random Dynamical Systems. In: Springer Monographs in Mathematics, pp. 11–22. Springer, Berlin and Heidelberg (2002)
    • 34. Furstenberg, H.: Strict ergodicity and transformation of the torus. Am. J. Math. 83, 573–601 (1961)
    • 35. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)
    • 36. Jachymski, J.R.: An fixed point criterion for continuous self mappings on a complete metric space. Aequations Math. 48, 163–170 (1994)
    • 37. Bielecki, A.: Iterated function systems analogues on compact metric spaces and their attractors. Univ. Iagel. Acta Math. 32, 187–192 (1995)
    • 38. Edalat, A.: Power Domains and Iterated Function Systems. Inform. and Comput. 124, 182–197 (1996)
    • 39. Nassiri, M., Pujals, E.R.: Robust transitivity in hamiltonian dynamics. Annales Scient. de l’École Normale Supérieure, Série, Tome 45(2),...
    • 40. Krengel, U.: Ergodic Theorems, pp. 103–121. de Gruyter Studies in Mathematics. Walter de Gruyter, Berlin (1985)
    • 41. Bugeaud, Y.: Distribution modulo one and Diophantine approximation. In: Cambridge Tracts in Mathematics, pp. 117–128. Cambridge University...
    • 42. Walter, P.: An Introduction to Ergodic Theory. Springer-Verlag, New York, Heidelberg, Berlin (1982)
    • 43. Viana, M., Oliveira, K.: Foundationa of Ergodic Theory. Cambridge Studies in Advanced Mathematics, Cambridge (2016)
    • 44. Ledrappier, F., Walters, P.: A relativised variational principle for continuous transformations. J. Lond. Math. Soc. 16, 568–579 (1977)
    • 45. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)
    • 46. Feng, D.J., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263(8), 2228–54 (2012)
    • 47. Cao, Y.L., Feng, D.J., Huang, W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)
    • 48. Barral, J., Feng, D.-J.: Weighted thermodynamic formalism on subshifts and applications. Asian J. Math. 16, 319–352 (2012)
    • 49. Feng, D.J., Huang, W.: Variational principle for weighted topological pressure. Journal de Mathématiques Pures et Appliquées. 106(3),...
    • 50. Aliprantis, C., Border, K.: Infinite Dimensional Analysis, 3rd edn. Springer-Verlag, Berlin (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno