Ir al contenido

Documat


Orbit equivalence of linear systems on manifolds and semigroup actions on homogeneous spaces

  • Cossich, João Augusto Navarro ; Hungaro, R. M. [1] ; Rocio, O. G. [1] ; Santana, A. J.
    1. [1] Universidade Estadual de Maringá

      Universidade Estadual de Maringá

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 5, 2022, págs. 1173-1198
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5169
  • Enlaces
  • Resumen
    • In this paper we introduce the notion of orbit equivalence for semi-group actions and the concept of generalized linear control system onsmooth manifold. The main goal is to prove that, under certain condi-tions, the semigroup system of a generalized linear control system on asmooth manifold is orbit equivalent to the semigroup system of a linearcontrol system on a homogeneous space.

  • Referencias bibliográficas
    • A. Agrachev and Y. Sachkov, Control Theory from the Geometric View-point. Berlin: Springer 2004.
    • V. Ayala and L.A.B. San Martin, “Controllability properties of a class of control systems on Lie groups”, in Nonlinear Control in the year...
    • V. Ayala and J. Tirao, “Linear control systems on Lie groups and local controllability”, in Differential geometry and control, G. Ferreyra,...
    • F. Colonius and C. Kawan, “Invariance Entropy for control systems”, SIAM Journal on Control and Optimization, vol. 48, no. 3, pp. 1701-1721,...
    • F. Colonius and W. Kliemann, The Dynamics of Control. Boston: Birkhäuser 2000.
    • A. da Silva, “Invariance Entropy for Control Systems on Lie Groups and Homogeneous Spaces”. Doctoral thesis, University of Campinas, 2013.
    • A. da Silva, “Outer invariance entropy for linear systems on Lie groups”, SIAM Journal on Control and Optimization, vol. 52, pp. 3917-3934,...
    • D.L. Elliott, Bilinear control systems: Matrices in action. New York: Springer 2009.
    • R. Ellis, “Cocycles in topological dynamics”. Topology, vol. 17, pp. 111-130, 1978. https://doi.org/10.1016/s0040-9383(78)90017-4
    • J. Hilgert and K-H., Neeb, Structure and Geometry of Lie Groups. Springer Monographs in Mathematics. Heidelberg: Springer, 2012.
    • P. Jouan, “Equivalence of Control Systems with Linear Systems on Groups and Homogeneous Spaces”, ESAIM: Control, Optimisation and Calculus...
    • V. Jurdjevic, Geometric control theory. Cambridge: Cambridge University Press 1997.
    • C. Kawan, Invariance Entropy for Deterministic Control Systems. An Introduction, vol. 2089. Cham: Springer, 2013.
    • L. Markus, “Controllability of multi-trajectories on Lie groups”, vol. 898, in Dynamical Systems and Turbulence, D. Rand and L.-S. Young,...
    • R. S. Palais, A global formulation of the Lie theory of transportation groups, vol. 22. Providence (RI): American Mathematical Society, 1957.
    • O. G. Rocio, L. A. B. San Martin and A. J. Santana, “Invariant cones and convex sets for bilinear control systems and parabolic type of semigroups”,...
    • O. G. Rocio, A. J. Santana and M. A. Verdi, “Semigroups of Affine Groups, Controllability of Affine Systems and Affine Bilinear Systems in...
    • Y. L. Sachkov, “Control theory on Lie groups”, Journal of Mathematical Sciences, vol. 156, pp. 381-439, 2009. doi: 10.1007/s10958-008-9275-0
    • L. A. B. San Martin, Lie Groups. Cham: Springer, 2021.
    • L. A. B. San Martin, “Invariant Control Sets on Flag Manifolds”, Mathematics of Control, Signals, and Systems, vol. 6, no. 1, pp. 41-61, 1993....
    • L. A. B. San Martin, and P.A. Tonelli, “Semigroup Actions on Homogeneous Spaces”. Semigroup Forum, vol. 50, no. 1, pp. 59-88, 1995. https://doi.org/10.1007/bf02573505
    • J. A. Souza, “On limit behavior of skew-product transformation semigroups”, Mathematische Nachrichten, vol. 287, no. 1, pp. 91-104, 2013....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno