Ir al contenido

Documat


Equitable chromatic number of weak modular product of Some graphs

  • Kaliraj, K. [1] ; Narmadha Devi, R. [1] ; Vernold Vivin, J. [2]
    1. [1] University of Madras

      University of Madras

      India

    2. [2] University College of Engineering Nagercoil.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 5, 2022, págs. 1051-1062
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5140
  • Enlaces
  • Resumen
    • An equitable coloring of a graph G is a proper coloring of the vertices of G such that the number of vertices in any two color clases differ by at most one. The equitable chromatic number χ=(G) of a graph G is the minimum number of colors needed for an equitable coloring of G. In this paper, we obtain the equitable chromatic number of weak modular product of two graphs G and H, denoted by G o H.

      First, we consider the graph G o H, where G is the path graph, and H be any simple graph like the path, the cycle graph, the complete graph. Secondly, we consider G and H as the complete graph and cycle graph respectively. Finally, we consider G as the star graph and H be the complete graph and star graph.

  • Referencias bibliográficas
    • M. M. Akbar Ali, K. Kaliraj and J. Vernold Vivin, “On equitable coloring of central graphs and total graphs”, Electronic notes in discrete...
    • B. L. Chen, K. W. Lih and P. L. Wu, “Equitable coloring and the maximum degree”, European journal of combinatorics, vol. 15, pp. 443-447,...
    • B. L. Chen, K. W. Lih and J. H. Yan, “Equitable coloring of graph products”, manuscript, 1998.
    • P. Erdös, Problem 9, In: M. Fielder (Ed.), Theory of graphs and its applications, 159. Prague: Czech Academy of Sciences Publications, 1964.
    • A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdos, In: P. Erdos, A. Renyi, V.T. Sos (Eds.), Combinatorial Theory and Applications,...
    • H. Furmánczyk, “Equitable coloring of graph products”, Opuscula mathematica, vol. 26, no. 1, pp. 31-44, 2006.
    • H. Furmánczyk, M. Kubale and V. V. Mkrtchyan, “Equitable colorings of corona multiproducts of graphs”, Discussiones mathematicae graph theory,...
    • H. Furmánczyk, K. Kaliraj, M.Kubale and J. Vernold Vivin, “Equitable coloring of corona products of graphs”, Advances and applications in...
    • R. H. Hammack, W. Imrich and S. Klavžar, Handbook of product graphs. CRC Press, 2011.
    • A.V. Kostochka, “Equitable colorings of outerplanar graphs”, Discrete mathematics, vol. 258, no. 1-3, pp. 373-377, 2002. doi: 10.1016/s0012-365x(02)00538-1
    • K Kaliraj, J. Veninstine Vivik and J. Vernold Vivin, “Equitable coloring on corona graph of graphs”, Journal of combinatorial mathematics...
    • A. V. Kostochka and K. Nakprasit, “Equitable colorings of k-degenerate graphs”, Combinatorics, probability and computing, vol. 12, pp. 53-60,...
    • A. V. Kostochka and K. Nakprasit, “On equitable ∆-coloring of graphs with low average degree”, Theoretical computer science, vol. 349, pp....
    • K. W. Lih and P.L. Wu, “On equitable coloring of bipartite graphs”, Discrete mathematics, vol. 151, no. 1-3, pp. 155-160, 1996. https://doi.org/10.1016/0012-365x(94)00092-w
    • W. H. Lin and G. J. Chang, “Equitable colorings of cartesian products of graphs”, Discrete applied mathematics, vol. 160, no. 3, pp. 239-347,...
    • W. Meyer, “Equitable coloring”, American mathematical monthly, vol. 80, no. 8, pp. 920-922, 1973. https://doi.org/10.2307/2319405
    • A. Tucker, “Perfect graphs and an application to optimizing municipal services”, SIAM reviews, vol. 15, no. 3, pp. 585-590, 1973. https://doi.org/10.1137/1015072
    • H. P. Yap and Y. Zhang, “Equitable colorings of planar graphs”, Journal of combinatorial mathematics and combinatorial computing, vol. 27,...
    • H. P. Yap and Y. Zhang, “The equitable ∆-coloring conjecture holds for outerplanar graphs”, Bulletin of the institute of mathematics academia...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno