Ir al contenido

Documat


Lie (Jordan) centralizers on alternative algebras

  • Jabeen, Aisha [2] ; Ferreira, Bruno [1]
    1. [1] Universidade Tecnológica Federal do Paraná

      Universidade Tecnológica Federal do Paraná

      Brasil

    2. [2] Jamia Millia Islamia.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 5, 2022, págs. 1035-1050
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4789
  • Enlaces
  • Resumen
    • In this article, we study Lie (Jordan) centralizers on alternative algebras and prove that every multiplicative Lie centralizer has proper form on alternative algebras under certain assumptions.

  • Referencias bibliográficas
    • L. Liu, “On Jordan centralizers of triangular algebras”, Banach Journal of Mathematical Analysis, vol. 10, no. 2, pp. 223-234, 2016. https://doi.org/10.1215/17358787-3492545
    • L. Liu, “On nonlinear Lie centralizers of generalized matrix algebras”, Linear and Multilinear Algebra, 2020. doi: 10.1080/03081087.2020.1810605
    • A. Jabeen, “Lie (Jordan) centralizers on generalized matrix algebras”, Communications in Algebra, pp. 278-291, 2020. https://doi.org/10.1080/00927872.2020.1797759
    • A. Fošner and W. Jing, “Lie centralizers on triangular rings and nest algebras”, Advances in Operator Theory, vol. 4, no. 2, pp. 342-350,...
    • F. Ghomanjani and M. A. Bahmani, “A note on Lie centralizer maps”, Palestine Journal of Mathematics, vol. 7, no. 2, pp. 468-471, 2018.
    • B. E. Johson, “An introduction to the theory of centralizers”, Proceedings of the London Mathematical Society, vol. 14, pp. 299-320, 1964....
    • M. Ashraf and N. Parveen, “On Jordan triple higher derivable mappings on rings”, Mediterranean Journal of Mathematics, vol. 13, no. 4, pp....
    • M. Ashraf and N. Parveen, ”Jordan higher derivable mappings on rings”, Algebra, vol. 2014, 2014. https://doi.org/10.1155/2014/672387
    • R. N. Ferreira and B. L. M. Ferreira, “Jordan triple derivation on alternative rings”, Proyecciones (Antofagasta), vol. 37, no. 1, pp. 171-180,...
    • R. N. Ferreira and B. L. M. Ferreira, “Jordan derivation on alternative rings”, International Journal of Mathematics, Game Theory, and Algebra,...
    • M. Ashraf and M.S. Akhtar and A. Jabeen, “Additivity of r-Jordan triple maps on triangular algebras”, Pacific Journal of Applied Mathematics,...
    • M. Ashraf and A. Jabeen, “Nonlinear Jordan triple higher derivable mappings of triangular algebras”, Southeast Asian Bulletin of Mathematics,...
    • M. Ashraf and N. Parveen, “Lie triple higher derivable mappings on rings”, Communications in Algebra, vol. 45, no. 5, pp. 2256-2275, 2014.
    • M. Ashraf and N. Parveen, “On Lie higher derivable mappings on prime rings”, Beiträge zur Algebra und Geometrie, vol. 57, no. 1, pp. 137-153,...
    • C. Haetinger, M. Ashraf and S. Ali, “On higher derivations: a survey”, International Journal of Mathematics, Game Theory, vol. 19, nos. 5-6,...
    • M. N. Daif, “When is a multiplicative derivation additive?”, International Journal of Mathematics and Mathematical Sciences, vol. 14, no....
    • J. C. M. Ferreira and H. Guzzo Jr., “Multiplicative mappings of alternative rings”, Algebras Groups and Geometries, vol. 31, no. 3, 239-250,...
    • J. C. M. Ferreira and H. Guzzo Jr., “Jordan elementary maps on alternative rings”, Communications in Algebra, vol. 42, no. 2, pp. 779-794,...
    • B. L. M. Ferreira and R. Nascimento, “Derivable maps on alternative rings”, Revista Ciencias Exatas e Naturais, vol. 16, no. 1, pp. 1-5, 2014....
    • R. D. Schafer, “Alternative algebras over an arbitrary field”, Bulletin of the American Mathematical Society, vol. 49, no. 8, pp. 549-555,...
    • R. D. Schafer, “Generalized standard algebras”, Journal of Algebra, vol. 12, no. 3, pp. 386-417, 1969. https://doi.org/10.1016/0021-8693(69)90039-8
    • R. D. Schafer, An introduction to nonassociative algebras. Academic Press, 1966.
    • M. Ferrero and C. Haetinger, “Higher derivations and a theorem by Herstein”, Quaestiones Mathematicae, vol. 25, no. 2, pp. 249-257, 2002....
    • M. Ferrero and C. Haetinger, “Higher derivations of semiprime rings”, Communications in Algebra, vol. 30, no. 5, pp. 2321-2333, 2002. https://doi.org/10.1081/agb-120003471
    • H. Hasse and F. K. Schimdt, “Noch eine Begründung ger Theorie der höheren Differential quotenten in einem algebraischen Fünktiosenkörper einer...
    • C. Haetinger, M. Ashraf and S. Ali, “Higher derivations: A survey”, International Journal of Mathematics, Game Theory and Algebra, vol. 19,...
    • W. Jing and F. Lu, “Additivity of Jordan (triple) derivations on rings”, Communications in Algebra, vol. 40, no. 8, pp. 2700-2719, 2012. https://doi.org/10.1080/00927872.2011.584927
    • F. Lu, “Jordan derivable maps of prime rings”, Communications in Algebra, vol. 38, no. 12, pp. 4430-4440, 2010. https://doi.org/10.1080/00927870903366884
    • W. S. Martindale III, “When are multiplicative mappings additive?”, Proceedings of the American Mathematical Society, vol. 21, no. 3, pp....
    • B. L. M. Ferreira and H. Guzzo Jr, “Lie maps on alternative rings”, Bollettino dell'Unione Matematica Italiana, vol. 13, no. 2, pp. 181-192,...
    • B. L. M. Ferreira, H. Guzzo Jr. and F. Wei, “Multiplicative Lie-type derivations on alternative rings”, Communications in Algebra, vol. 48,...
    • B. L. M. Ferreira, H. Guzzo Jr., R. N. Ferreira and F. Wei, “Jordan derivations of alternative rings”, Communications in Algebra, vol. 48,...
    • B. L. M. Ferreira and I. Kaygorodov, “Commuting maps on alternative rings”, Ricerche di Matematica, vol. 71, pp. 67-78, 2020. https://doi.org/10.1007/s11587-020-00547-z

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno