Ir al contenido

Documat


On the cohomological equation of a linear contraction

  • Leclercq, Régis [1] ; Zeggar, Abdellatif [1]
    1. [1] Université Polytechnique Hauts-de-France.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 5, 2022, págs. 1075-1091
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4559
  • Enlaces
  • Resumen
    • In this paper, we study the discrete cohomological equation of a contracting linear automorphism A of the Euclidean space Rd. More precisely, if δ is the cobord operator defined on the Fréchet space E = Cl (Rd) (0 ≤ l ≤ ∞) by: δ(h) = h − h ◦ A, we show that:

      If E = C0(Rd), the range δ (E) of δ has infinite codimension and its closure is the hyperplane E0 consisting of the elements of E vanishing at 0. Consequently, H1 (A, E) is infinite dimensional non Hausdorff topological vector space and then the automorphism A is not cohomologically C0-stable.

      If E = Cl (Rd), with 1 ≤ l ≤ ∞, the space δ (E) coincides with the closed hyperplane E0. Consequently, the cohomology space H1 (A, E) is of dimension 1 and the automorphism A is cohomologically Cl-stable.

  • Referencias bibliográficas
    • D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Mathematics of the USSR-Izvestiya,...
    • A. Avila and A. Kocsard, “Cohomological equations and invariant distributions for minimal circle diffeomorphisms”, Duke Mathematical Journal,...
    • A. Dehghan-Nezhad and A. El Kacimi Alaoui, “Équations cohomologiques de flots riemanniens et de difféomorphismes d’Anosov”, Journal of the...
    • A. El Kacimi Alaoui, “The ∂ operator along the leaves and Guichard’s theorem for a complex simple foliation”, Mathematische Annalen, vol....
    • A. El Kacimi Alaoui, “Quelques questions sur la chomologie des groupes discrets valeurs dans un Fréchet”. Preprint, 2020.
    • A. Guichardet, Cohomologie des groupes topologiques et des algbres de Lie. CEDIC, 1980.
    • A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory. In: Proceedings of Symposia in Pure Mathematics, vol. 69,...
    • S. Marmi, P. Moussa and J.-C. Yoccoz, “The cohomological equation for roth-type interval exchange maps”, Journal of the American Mathematical...
    • W. Rudin, Analyse fonctionnelle. Ediscience, 2000.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno