Ir al contenido

Documat


Multiple Positive Periodic Solutions to Minkowski-Curvature Equations with a Singularity of Attractive Type

  • Zhibo Cheng [1] ; Ci Kong [1] ; Chenyang Xia [1]
    1. [1] Henan Polytechnic University

      Henan Polytechnic University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Using Leray–Schauder degree theory, we investigate the existence and multiplicity of positive T -periodic solutions to Minkowski-curvature equations with a singularity of attractive type u √ 1 − u2 + f (u)u + ϕ(t)um + r(t) uμ = s, where f ∈ C((0, +∞), R), ϕ ∈ C(R, R) and r ∈ C(R, (0, +∞)) are T -periodic functions, m and μ are two positive constants and 0 < m ≤ 1, s ∈ R is a parameter.

      Based on a new method to construct upper and lower functions and some properties of Leray–Schauder degree, a multiplicity result of Ambrosetti-Prodi type is established.

  • Referencias bibliográficas
    • 1. Azzollini, A.: Ground state solution for a problem with mean curvature operator in Minkowski space. J. Funct. Anal. 266, 2086–2095 (2014)
    • 2. Azzolini, A.: On a prescribed mean curvature equation in Lorentz-Minkowski space. J. Math. Pures Appl. 106, 1122–1140 (2016)
    • 3. Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87, 131–152 (1982/83)
    • 4. Benson, J.D., Chicone, C., Critser, J.K.: A general model for the dynamics of cell volume, global stability and optimal control. J. Math....
    • 5. Bereanu, C., Mawhin, J.: Existence and multiplicity results for some nonlinear problems with singular φ−Laplacian. J. Differ. Equ. 243,...
    • 6. Bereanu, C., Jebelean, P., Torres, P.: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator...
    • 7. Bevc, V., Palmer, J.L., Süsskind, C.: On the design of the transition region of axisymmetric, magnetically focused beam valves. J. Br....
    • 8. Boscaggin, A., Feltrin, G.: Positive periodic solutions to an indefinite Minkowski-curvature equation. J. Differ. Equ. 269, 5595–5645 (2020)
    • 9. Cheng, Z., Gu, L.: Positive periodic solution to a second-order differential equation with attractiverepulsive singularities. Rocky Mt....
    • 10. Chu, J., Torres, P., Wang, F.: Twist periodic solutions for differential equations with a combined attractive-repulsive singularity. J....
    • 11. Coster, C.D., Habets, P.: Two-point Boundary Value Problems: Lower and Upper Solutions. Elsevier, Amsterdam (2006)
    • 12. Fabry, C., Mawhin, J., Nkashma, M.N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential...
    • 13. Feltrin, G., Soverano, E., Zanolin, F.: Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator. Nonlinear...
    • 14. Fonda, A., Sfecci, A.: On a singular periodic Ambrosetti–Prodi problem. Nonlinear Anal. 149, 146–155 (2017)
    • 15. Gerhardt, C.: H-surfaces in Lorentzian manifolds. Commun. Math. Phys. 89, 523–553 (1983)
    • 16. Godoy, J., Hakl, R., Yu, X.: Existence and multiplicity of periodic solutions to differential equations with attractive singularities....
    • 17. Greiner, W.: Classical Mechanics: Point Particles and Relativity. Springer, New York (2004)
    • 18. Hakl, R., Torres, P., Zamora, M.: Periodic solutions of singular second order differential equations: upper and lower functions. Nonlinear...
    • 19. Ham, X., Cheng, Z.: Positive periodic solutions to a second-order singular differential equation with indefinite weights. Qual. Theory...
    • 20. Hernández, J.A.: A general model for the dynamics of the cell volume. Bull. Math. Biol. 69, 1631–1648 (2007)
    • 21. Lazer, A., Solimini, S.: On periodic solutions of nonlinear differential equations with singularities. Proc. Am. Math. Soc. 99, 109–114...
    • 22. Sovrano, E., Zanolin, F.: Ambrosetti–Prodi periodic problem under local coercivity conditions. Adv. Nonlinear Stud. 18, 169–182 (2018)
    • 23. Yu, X., Lu, S.: A multiplicity result for periodic solutions of Liénard equations with an attractive singularity. Appl. Math. Comput....
    • 24. Yu, X., Lu, S., Kong, F.: Existence and multiplicity of positive periodic solutions to Minkowskicurvature equations without coercivity...
    • 25. Yu, X., Lu, S.: A singular periodic Ambrosetti–Prodi problem of Rayleigh equations without coercivity conditions. Commun. Contemp. Math....
    • 26. Zhang, M.: Periodic solutions of Liénard equations with singular forces of repusive type. J. Math. Anal. Appl. 203, 254–269 (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno