Hebai Chen, Jie Jin, Zhaoxia Wang, Baodong Zhang
This paper is to study the global dynamics of a van der Pol-Duffing oscillator with indefinite degree x˙ = y, y˙ = ax+x2n+1−δ(b+x2m)y, where a, b, δ ∈ R, m, n ∈ N+ and δ = 0. By qualitative and bifurcation analysis, the oscillator contains abundant nonlinear phenomena, including the heteroclinic bifurcation, degenerate Hopf bifurcation, bifurcation of equilibria at infinity and pitchfork bifurcation.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados